PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  SOX5 Is a Candidate Gene for Chronic Obstructive Pulmonary Disease Susceptibility and Is Necessary for Lung Development 
Rationale: Chromosome 12p has been linked to chronic obstructive pulmonary disease (COPD) in the Boston Early-Onset COPD Study (BEOCOPD), but a susceptibility gene in that region has not been identified.
Objectives: We used high-density single-nucleotide polymorphism (SNP) mapping to implicate a COPD susceptibility gene and an animal model to determine the potential role of SOX5 in lung development and COPD.
Methods: On chromosome 12p, we genotyped 1,387 SNPs in 386 COPD cases from the National Emphysema Treatment Trial and 424 control smokers from the Normative Aging Study. SNPs with significant associations were then tested in the BEOCOPD study and the International COPD Genetics Network. Based on the human results, we assessed histology and gene expression in the lungs of Sox5−/− mice.
Measurements and Main Results: In the case-control analysis, 27 SNPs were significant at P ≤ 0.01. The most significant SNP in the BEOCOPD replication was rs11046966 (National Emphysema Treatment Trial–Normative Aging Study P = 6.0 × 10−4, BEOCOPD P = 1.5 × 10−5, combined P = 1.7 × 10−7), located 3′ to the gene SOX5. Association with rs11046966 was not replicated in the International COPD Genetics Network. Sox5−/− mice showed abnormal lung development, with a delay in maturation before the saccular stage, as early as E16.5. Lung pathology in Sox5−/− lungs was associated with a decrease in fibronectin expression, an extracellular matrix component critical for branching morphogenesis.
Conclusions: Genetic variation in the transcription factor SOX5 is associated with COPD susceptibility. A mouse model suggests that the effect may be due, in part, to its effects on lung development and/or repair processes.
doi:10.1164/rccm.201010-1751OC
PMCID: PMC3137139  PMID: 21330457
chronic obstructive pulmonary disease; emphysema; knockout mice; lung development; single nucleotide polymorphism
2.  Fungal Exposure Modulates the Effect of Polymorphisms of Chitinases on Emergency Department Visits and Hospitalizations 
Rationale: Chitinases are enzymes that cleave chitin, which is present in fungal cells. Two types of human chitinases, chitotriosidase and acidic mammalian chitinase, and the chitinase-like protein, YKL-40, seem to play an important role in asthma. We hypothesized that exposure to environmental fungi may modulate the effect of chitinases in individuals with asthma.
Objectives: To explore whether interactions between high fungal exposure and common genetic variants in the two chitinases in humans, CHIT1 and CHIA, and the chitinase 3-like 1 gene, CHI3L1, are associated with severe asthma exacerbations and other asthma-related outcomes.
Methods: Forty-eight single nucleotide polymorphisms (SNPs) in CHIT1, CHIA, and CHI3L1 and one CHIT1 duplication were genotyped in 395 subjects and their parents as part of the Childhood Asthma Management Program. Household levels of mold (an index of fungal exposure) were determined on house dust samples. We conducted family-based association tests with gene–environment interactions. Our outcome was severe exacerbation, defined as emergency department visits and hospitalizations from asthma over a 4-year period, and our secondary outcomes included indices of lung function and allergy-related phenotypes.
Measurements and Main Results: Of the 395 subjects who had mold levels at randomization, 24% (95 subjects) had levels that were greater than 25,000 units per gram of house dust (high mold exposure). High mold exposure significantly modified the relation between three SNPs in CHIT1 (rs2486953, rs4950936, and rs1417149) and severe exacerbations (P for interaction 0.0010 for rs2486953, 0.0008 for rs4950936, and 0.0005 for rs1417149). High mold exposure did not significantly modify the relationship between any of the other variants and outcomes.
Conclusions: Environmental exposure to fungi, modifies the effect of CHIT1 SNPs on severe asthma exacerbations.
doi:10.1164/rccm.201003-0322OC
PMCID: PMC2970860  PMID: 20538957
chitinase; asthma; CHIA; CHIT1; CHI13L1
3.  Multistudy Fine Mapping of Chromosome 2q Identifies XRCC5 as a Chronic Obstructive Pulmonary Disease Susceptibility Gene 
Rationale: Several family-based studies have identified genetic linkage for lung function and airflow obstruction to chromosome 2q.
Objectives: We hypothesized that merging results of high-resolution single nucleotide polymorphism (SNP) mapping in four separate populations would lead to the identification of chronic obstructive pulmonary disease (COPD) susceptibility genes on chromosome 2q.
Methods: Within the chromosome 2q linkage region, 2,843 SNPs were genotyped in 806 COPD cases and 779 control subjects from Norway, and 2,484 SNPs were genotyped in 309 patients with severe COPD from the National Emphysema Treatment Trial and 330 community control subjects. Significant associations from the combined results across the two case-control studies were followed up in 1,839 individuals from 603 families from the International COPD Genetics Network (ICGN) and in 949 individuals from 127 families in the Boston Early-Onset COPD Study.
Measurements and Main Results: Merging the results of the two case-control analyses, 14 of the 790 overlapping SNPs had a combined P < 0.01. Two of these 14 SNPs were consistently associated with COPD in the ICGN families. The association with one SNP, located in the gene XRCC5, was replicated in the Boston Early-Onset COPD Study, with a combined P = 2.51 × 10−5 across the four studies, which remains significant when adjusted for multiple testing (P = 0.02). Genotype imputation confirmed the association with SNPs in XRCC5.
Conclusions: By combining data from COPD genetic association studies conducted in four independent patient samples, we have identified XRCC5, an ATP-dependent DNA helicase, as a potential COPD susceptibility gene.
doi:10.1164/rccm.200910-1586OC
PMCID: PMC2937234  PMID: 20463177
emphysema; genetic linkage; metaanalysis; single nucleotide polymorphism
4.  Assessing the Reproducibility of Asthma Candidate Gene Associations, Using Genome-wide Data 
Rationale: Association studies have implicated many genes in asthma pathogenesis, with replicated associations between single-nucleotide polymorphisms (SNPs) and asthma reported for more than 30 genes. Genome-wide genotyping enables simultaneous evaluation of most of this variation, and facilitates more comprehensive analysis of other common genetic variation around these candidate genes for association with asthma.
Objectives: To use available genome-wide genotypic data to assess the reproducibility of previously reported associations with asthma and to evaluate the contribution of additional common genetic variation surrounding these loci to asthma susceptibility.
Methods: Illumina Human Hap 550Kv3 BeadChip (Illumina, San Diego, CA) SNP arrays were genotyped in 422 nuclear families participating in the Childhood Asthma Management Program. Genes with at least one SNP demonstrating prior association with asthma in two or more populations were tested for evidence of association with asthma, using family-based association testing.
Measurements and Main Results: We identified 39 candidate genes from the literature, using prespecified criteria. Of the 160 SNPs previously genotyped in these 39 genes, 10 SNPs in 6 genes were significantly associated with asthma (including the first independent replication for asthma-associated integrin β3 [ITGB3]). Evaluation of 619 additional common variants included in the Illumina 550K array revealed additional evidence of asthma association for 15 genes, although none were significant after adjustment for multiple comparisons.
Conclusions: We replicated asthma associations for a minority of candidate genes. Pooling genome-wide association study results from multiple studies will increase the power to appreciate marginal effects of genes and further clarify which candidates are true “asthma genes.”
doi:10.1164/rccm.200812-1860OC
PMCID: PMC2695495  PMID: 19264973
asthma; replication; single-nucleotide polymorphism; integrin β3; association
5.  Variants in TGFB1, Dust Mite Exposure, and Disease Severity in Children with Asthma 
Rationale: Polymorphisms in the gene for transforming growth factor-β1 (TGFB1) have been associated with asthma, but not with airway responsiveness or disease exacerbations in subjects with asthma.
Objectives: To test for association between single nucleotide polymorphisms (SNPs) in TGFB1 and markers of asthma severity in childhood.
Methods: We tested for the association between nine SNPs in TGFB1 and indicators of asthma severity (lung function, airway responsiveness, and disease exacerbations) in two cohorts: 416 Costa Rican parent-child trios and 465 families of non-Hispanic white children in the Childhood Asthma Management Program (CAMP). We also tested for the interaction between these polymorphisms and exposure to dust mite allergen on asthma severity.
Measurements and Main Results: The A allele of promoter SNP rs2241712 was associated with increased airway responsiveness in Costa Rica (P = 0.0006) and CAMP (P = 0.005), and the C allele of an SNP in the promoter region (rs1800469) was associated with increased airway responsiveness in both cohorts (P ≤ 0.01). Dust mite exposure modified the effect of the C allele of exonic SNP rs1800471 on airway responsiveness (P = 0.03 for interactions in both cohorts). The T allele of a coding SNP (rs1982073) was associated with a reduced risk of asthma exacerbations in Costa Rica (P = 0.009) and CAMP (P = 0.005). Dust mite exposure also significantly modified the effect of the A allele of the promoter SNP rs2241712 on asthma exacerbations in both cohorts.
Conclusions: SNPs in TGFB1 are associated with airway responsiveness and disease exacerbations in children with asthma. Moreover, dust mite exposure may modify the effect of TGFB1 SNPs on airway responsiveness and asthma exacerbations.
doi:10.1164/rccm.200808-1268OC
PMCID: PMC2648908  PMID: 19096005
airway responsiveness; asthma; dust mite allergen; single nucleotide polymorphisms; transforming growth factor-β1
6.  Sex-stratified Linkage Analysis Identifies a Female-specific Locus for IgE to Cockroach in Costa Ricans 
Rationale: The basis for gender influences on allergen-specific IgEs is unclear.
Objectives: To perform regular and sex-stratified genomewide linkage analyses of IgE to each of three allergens (Ascaris lumbricoides, Blatella germanica [German cockroach]), and Dermatophagoides pteronyssinus [dust mite]) and to conduct an association study of a candidate gene in a linked genomic region.
Methods: Genomewide linkage analyses of allergen-specific IgEs were conducted in 653 members of eight large families of Costa Rican children with asthma. An analysis of the association between single-nucleotide polymorphisms in thymic stromal lymphopoietin (TSLP) and IgE measurements was conducted in 417 parent–child trios in Costa Rica. Significant results were replicated in 470 families of white children in the Childhood Asthma Management Program (CAMP).
Measurements and Main Results: Among all subjects, there was suggestive evidence of linkage (LOD ⩾ 2.72) to IgE to Ascaris (on chromosome 7q) and IgE to dust mite (on chromosomes 7p and 12q). In a sex-stratified analysis, there was significant evidence of linkage to IgE to cockroach on chromosome 5q23 (peak LOD, 4.14 at 127 cM) in female subjects. TSLP is located within the 1.5 LOD-unit support interval for this linkage peak and has female-specific effects on lung disease in mice. In a sex-stratified analysis, the T allele of single-nucleotide polymorphism rs2289276 in TSLP was associated with reductions in IgE to cockroach (in Costa Rican girls) and total IgE (in girls in Costa Rica and in CAMP; P value for sex-by-genotype interaction, <0.01 in both studies).
Conclusions: Consistent with findings in murine models, a variant in TSLP may have female-specific effects on allergic phenotypes.
doi:10.1164/rccm.200711-1697OC
PMCID: PMC2292826  PMID: 18244952
immunoglobulin E; linkage; thymic stromal lymphopoietin; single-nucleotide polymorphisms
7.  Comprehensive Testing of Positionally Cloned Asthma Genes in Two Populations 
Rationale: Replication of gene-disease associations has become a requirement in complex trait genetics.
Objectives: In studies of childhood asthma from two different ethnic groups, we attempted to replicate associations with five potential asthma susceptibility genes previously identified by positional cloning.
Methods: We analyzed two family-based samples ascertained through an asthmatic proband: 497 European-American children from the Childhood Asthma Management Program and 439 Hispanic children from the Central Valley of Costa Rica. We genotyped 98 linkage disequilibrium–tagging single-nucleotide polymorphisms (SNPs) in five genes: ADAM33, DPP10, GPR154 (HUGO name: NPSR1), HLA-G, and the PHF11 locus (includes genes SETDB2 and RCBTB1). SNPs were tested for association with asthma and two intermediate phenotypes: airway hyperresponsiveness and total serum immunoglobulin E levels.
Measurements and Main Results: Despite differing ancestries, linkage disequilibrium patterns were similar in both cohorts. Of the five evaluated genes, SNP-level replication was found only for GPR154 (NPSR1). In this gene, three SNPs were associated with asthma in both cohorts, although the opposite alleles were associated in either study. Weak evidence for locus-level replication with asthma was found in the PHF11 locus, although there was no overlap in the associated SNP across the two cohorts. No consistent associations were observed for the three other genes.
Conclusions: These results provide some further support for the role of genetic variation in GPR154 (NPSR1) and PHF11 in asthma susceptibility and also highlight the challenges of replicating genetic associations in complex traits such as asthma, even for genes identified by linkage analysis.
doi:10.1164/rccm.200704-592OC
PMCID: PMC2048676  PMID: 17702965
bronchial hyperreactivity; immunoglobulin E; linkage disequilibrium; NPSR1; single-nucleotide polymorphism

Results 1-7 (7)