Search tips
Search criteria

Results 1-25 (1015)

Clipboard (0)
Year of Publication
1.  Cytokines Alter Glucocorticoid Receptor Phosphorylation in Airway Cells 
Corticosteroid insensitivity (CSI) represents a profound challenge in managing patients with asthma. We recently demonstrated that short exposure of airway smooth muscle cells (ASMCs) to proasthmatic cytokines drastically reduced their responsiveness to glucocorticoids (GCs), an effect that was partially mediated via interferon regulatory factor-1, suggesting the involvement of additional mechanisms (Am J Respir Cell Mol Biol 2008;38:463–472). Although GC receptor (GR) can be phosphorylated at multiple serines in the N-terminal region, the major phosphorylation sites critical for GR transcriptional activity are serines 211 (Ser211) and 226 (Ser226). We tested the novel hypothesis that cytokine-induced CSI in ASMCs is due to an impaired GR phosphorylation. Cells were treated with TNF-α (10 ng/ml) and IFN-γ (500 UI/ml) for 6 hours and/or fluticasone (100 nm) added 2 hours before. GR was constitutively phosphorylated at Ser226 but not at Ser211 residues. Cytokines dramatically suppressed fluticasone-induced phosphorylation of GR on Ser211 but not on Ser226 residues while increasing the expression of Ser/Thr protein phosphatase (PP)5 but not that of PP1 or PP2A. Transfection studies using a reporter construct containing GC responsive elements showed that the specific small interfering RNA–induced mRNA knockdown of PP5, but not that of PP1 or PP2A, partially prevented the cytokine suppressive effects on GR-meditated transactivation activity. Similarly, cytokines failed to inhibit GC-induced GR-Ser211 phosphorylation when expression of PP5 was suppressed. We propose that the novel mechanism that proasthmatic cytokine-induced CSI in ASMCs is due, in part, to PP5-mediated impairment of GR-Ser211 phosphorylation.
PMCID: PMC3488623  PMID: 22592921
serine/threonine protein phosphatase; airway smooth muscle; asthma; corticosteroid insensitivity; airway remodeling
2.  Glucocorticoid Receptor Interacting Protein-1 Restores Glucocorticoid Responsiveness in Steroid-Resistant Airway Structural Cells 
Glucocorticoid (GC) insensitivity represents a profound challenge in managing patients with asthma. The mutual inhibition of transcriptional activity between GC receptor (GR) and other regulators is one of the mechanisms contributing to GC resistance in asthma. We recently reported that interferon regulatory factor (IRF)-1 is a novel transcription factor that promotes GC insensitivity in human airway smooth muscle (ASM) cells by interfering with GR signaling (Tliba et al., Am J Respir Cell Mol Biol 2008;38:463–472). Here, we sought to determine whether the inhibition of GR function by IRF-1 involves its interaction with the transcriptional co-regulator GR-interacting protein 1 (GRIP-1), a known GR transcriptional co-activator. We here found that siRNA-mediated GRIP-1 depletion attenuated IRF-1–dependent transcription of the luciferase reporter construct and the mRNA expression of an IRF-1–dependent gene, CD38. In parallel experiments, GRIP-1 silencing significantly reduced GR-mediated transactivation activities. Co-immunoprecipitation and GST pull-down assays showed that GRIP-1, through its repression domain, physically interacts with IRF-1 identifying GRIP-1 as a bona fide transcriptional co-activator for IRF-1. Interestingly, the previously reported inhibition of GR-mediated transactivation activities by either TNF-α and IFN-γ treatment or IRF-1 overexpression was fully reversed by increasing cellular levels of GRIP-1. Together, these data suggest that the cellular accumulation of IRF-1 may represent a potential molecular mechanism mediating altered cellular response to GC through the depletion of GRIP-1 from the GR transcriptional regulatory complexes.
PMCID: PMC2809222  PMID: 19805480
glucocorticoid; cytokine; airway smooth muscle; IRF-1; GRIP-1
3.  Cigarette Smoke Triggers Code Red 
The article by Yao and coworkers in this issue (Am. J. Respir. Cell Mol. Biol. 2008;39:7–18) reveals that the cyclin-dependent kinase inhibitor p21CIP1/WAF1/SDI1 (designated hereafter as p21), which has been linked to cell cycle growth arrest due to stress or danger cell responses, may modulate alveolar inflammation and alveolar destruction, and thus enlightens our present understanding of how the lung senses injury due to cigarette smoke and integrates these responses with those that activate inflammatory pathways potentially harmful to the lung (1). Furthermore, the interplay of p21 and cellular processes involving cell senescence and the imbalance of cell proliferation/apoptosis may provide us with a more logical explanation of how p21, acting as a sensor of cellular stress, might have such potent and wide roles in lung responses triggered by cigarette smoke. Molecular switches, ontologically designed for the protection of the host, are now hijacked by injurious stresses (such as cigarette smoke), leading to organ damage.
PMCID: PMC2720121  PMID: 18441278
4.  Heat Shock Protein 90 Inhibitors Prevent LPS-Induced Endothelial Barrier Dysfunction by Disrupting RhoA Signaling 
Permeability of the endothelial monolayer is increased when exposed to the bacterial endotoxin LPS. Our previous studies have shown that heat shock protein (Hsp) 90 inhibitors protect and restore LPS-mediated hyperpermeability in bovine pulmonary arterial endothelial cells. In this study, we assessed the effect of Hsp90 inhibition against LPS-mediated hyperpermeability in cultured human lung microvascular endothelial cells (HLMVECs) and delineated the underlying molecular mechanisms. We demonstrate that Hsp90 inhibition is critical in the early phase, to prevent LPS-mediated hyperpermeability, and also in the later phase, to restore LPS-mediated hyperpermeability in HLMVECs. Because RhoA is a well known mediator of endothelial hyperpermeability, we investigated the effect of Hsp90 inhibition on LPS-mediated RhoA signaling. RhoA nitration and activity were increased by LPS in HLMVECs and suppressed when pretreated with the Hsp90 inhibitor, 17-allylamino-17 demethoxy-geldanamycin (17-AAG). In addition, inhibition of Rho kinase, a downstream effector of RhoA, protected HLMVECs from LPS-mediated hyperpermeability and abolished LPS-induced myosin light chain (MLC) phosphorylation, a target of Rho kinase. In agreement with these findings, 17-AAG or dominant-negative RhoA attenuated LPS-induced MLC phosphorylation. MLC phosphorylation induced by constitutively active RhoA was also suppressed by 17-AAG, suggesting a role for Hsp90 downstream of RhoA. Inhibition of Src family kinases also suppressed RhoA activity and MLC phosphorylation. Together, these data indicate that Hsp90 inhibition prevents and repairs LPS-induced lung endothelial barrier dysfunction by suppressing Src-mediated RhoA activity and signaling.
PMCID: PMC3930930  PMID: 23972231
endothelial permeability; LPS; heat shock protein 90; RhoA; Rho kinase
5.  Inhibition of Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis by Methacycline 
A high-throughput small-molecule screen was conducted to identify inhibitors of epithelial–mesenchymal transition (EMT) that could be used as tool compounds to test the importance of EMT signaling in vivo during fibrogenesis. Transforming growth factor (TGF)-β1–induced fibronectin expression and E-cadherin repression in A549 cells were used as 48-hour endpoints in a cell-based imaging screen. Compounds that directly blocked Smad2/3 phosphorylation were excluded. From 2,100 bioactive compounds, methacycline was identified as an inhibitor of A549 EMT with the half maximal inhibitory concentration (IC50) of roughly 5 μM. In vitro, methacycline inhibited TGF-β1–induced α-smooth muscle actin, Snail1, and collagen I of primary alveolar epithelial cells . Methacycline inhibited TGF-β1–induced non-Smad pathways, including c-Jun N-terminal kinase, p38, and Akt activation, but not Smad or β-catenin transcriptional activity. Methacycline had no effect on baseline c-Jun N-terminal kinase, p38, or Akt activities or lung fibroblast responses to TGF-β1. In vivo, 100 mg/kg intraperitoneal methacycline delivered daily beginning 10 days after intratracheal bleomycin improved survival at Day 17 (P < 0.01). Bleomycin-induced canonical EMT markers, Snail1, Twist1, collagen I, as well as fibronectin protein and mRNA, were attenuated by methacycline (Day 17). Methacycline did not attenuate inflammatory cell accumulation or alter TGF-β1–responsive genes in alveolar macrophages. These studies identify a novel inhibitor of EMT as a potent suppressor of fibrogenesis, further supporting the concept that EMT signaling is important to lung fibrosis. The findings also provide support for testing the impact of methacycline or doxycycline, an active analog, on progression of human pulmonary fibrosis.
PMCID: PMC3930932  PMID: 23944988
Jun kinase; signaling; Snail1; tetracycline
6.  Active Components of Ginger Potentiate β-Agonist–Induced Relaxation of Airway Smooth Muscle by Modulating Cytoskeletal Regulatory Proteins 
β-Agonists are the first-line therapy to alleviate asthma symptoms by acutely relaxing the airway. Purified components of ginger relax airway smooth muscle (ASM), but the mechanisms are unclear. By elucidating these mechanisms, we can explore the use of phytotherapeutics in combination with traditional asthma therapies. The objectives of this study were to: (1) determine if 6-gingerol, 8-gingerol, or 6-shogaol potentiate β-agonist–induced ASM relaxation; and (2) define the mechanism(s) of action responsible for this potentiation. Human ASM was contracted in organ baths. Tissues were relaxed dose dependently with β-agonist, isoproterenol, in the presence of vehicle, 6-gingerol, 8-gingerol, or 6-shogaol (100 μM). Primary human ASM cells were used for cellular experiments. Purified phosphodiesterase (PDE) 4D or phospholipase C β enzyme was used to assess inhibitory activity of ginger components using fluorescent assays. A G-LISA assay was used to determine the effects of ginger constituents on Ras homolog gene family member A activation. Significant potentiation of isoproterenol-induced relaxation was observed with each of the ginger constituents. 6-Shogaol showed the largest shift in isoproterenol half-maximal effective concentration. 6-Gingerol, 8-gingerol, or 6-shogaol significantly inhibited PDE4D, whereas 8-gingerol and 6-shogaol also inhibited phospholipase C β activity. 6-Shogaol alone inhibited Ras homolog gene family member A activation. In human ASM cells, these constituents decreased phosphorylation of 17-kD protein kinase C–potentiated inhibitory protein of type 1 protein phosphatase and 8-gingerol decreased myosin light chain phosphorylation. Isolated components of ginger potentiate β-agonist–induced relaxation in human ASM. This potentiation involves PDE4D inhibition and cytoskeletal regulatory proteins. Together with β-agonists, 6-gingerol, 8-gingerol, or 6-shogaol may augment existing asthma therapy, resulting in relief of symptoms through complementary intracellular pathways.
PMCID: PMC3930933  PMID: 23962082
asthma; adrenergic receptor; myosin light chain; lung; bronchodilation
7.  Neutrophil–Endothelial Interactions Mediate Angiopoietin-2–Associated Pulmonary Endothelial Cell Dysfunction in Indirect Acute Lung Injury in Mice 
Unresolved inflammation in the lung is thought to elicit loss of endothelial cell (EC) barrier integrity and impaired lung function. We have shown, in a mouse model of shock/sepsis, that neutrophil interactions with resident pulmonary cells appear central to the pathogenesis of indirect acute lung injury (iALI). Normally, EC growth factors angiopoietin (Ang)-1 and Ang-2 maintain vascular homeostasis through tightly regulated interaction with the kinase receptor Tie2 expressed on ECs. Although Ang-1/Tie2 has been shown to promote vessel integrity, stimulating downstream prosurvival/antiinflammatory signaling, Ang-2, released from activated ECs, is reported to promote vessel destabilization. This mechanism of regulation, together with recent clinical findings that plasma Ang-2 levels are significantly elevated in patients who develop acute respiratory distress syndrome, has focused our investigation on the contribution of Ang-2 to the development of iALI. A murine model of hemorrhagic shock–induced priming for the development of iALI after subsequent septic challenge was used in this study. Our findings show that 1) Ang-2 is elevated in our experimental model for iALI, 2) direct EC/neutrophil interactions contribute significantly to EC Ang-2 release, and 3) suppression of Ang-2 significantly decreases inflammatory lung injury, neutrophil influx, and lung and plasma IL-6 and TNF-α. These findings support our hypothesis and suggest that Ang-2 plays a role in the loss of pulmonary EC barrier function in the development of iALI in mice resultant from the sequential insults of hemorrhagic shock and sepsis and that this is mediated by EC interaction with activated neutrophils.
PMCID: PMC3930935  PMID: 23980650
angiopoietin-2; indirect acute lung injury; neutrophil; short interference (si)-RNA; endothelial cells
8.  Up-Regulation of Heparan Sulfate 6-O-Sulfation in Idiopathic Pulmonary Fibrosis 
Heparan sulfate proteoglycans (HSPGs) are integral components of the lung. Changes in HSPGs have been documented in idiopathic pulmonary fibrosis (IPF). Many of the biological functions of HSPGs are mediated by heparan sulfate (HS) side chains, and little is understood about these side chains in the pathogenesis of IPF. The aims of this study were to compare HS structure between normal and IPF lungs and to examine how changes in HS regulate the fibrotic process. HS disaccharide analysis revealed that HS 6-O-sulfation was significantly increased in IPF lungs compared with normal lungs, concomitant with overexpression of HS 6-O-sulfotransferases 1 and 2 (HS6ST1/2) mRNA. Immunohistochemistry revealed that HS6ST2 was specifically expressed in bronchial epithelial cells, including those lining the honeycomb cysts in IPF lungs, whereas HS6ST1 had a broad expression pattern. Lung fibroblasts in the fibroblastic foci of IPF lungs expressed HS6ST1, and overexpression of HS6ST1 mRNA was observed in primary lung fibroblasts isolated from IPF lungs compared with those from normal lungs. In vitro, small interference RNA–mediated silencing of HS6ST1 in primary normal lung fibroblasts resulted in reduced Smad2 expression and activation and in reduced expression of collagen I and α-smooth muscle actin after TGF-β1 stimulation. Similar results were obtained in primary IPF lung fibroblasts. Furthermore, silencing of HS6ST1 in normal and IPF lung fibroblasts resulted in significant down-regulation of TβRIII (betaglycan). In summary, HS 6-O-sulfation is up-regulated in IPF with overexpression of HS6ST1 and HS6ST2, and overexpression of HS6ST1 in lung fibroblasts may regulate their fibrotic responses to TGF-β1.
PMCID: PMC3930936  PMID: 23962103
idiopathic pulmonary fibrosis; heparan sulfate; fibroblast; HS6ST; TGF-β1
9.  Genome Reference and Sequence Variation in the Large Repetitive Central Exon of Human MUC5AC 
Despite modern sequencing efforts, the difficulty in assembly of highly repetitive sequences has prevented resolution of human genome gaps, including some in the coding regions of genes with important biological functions. One such gene, MUC5AC, encodes a large, secreted mucin, which is one of the two major secreted mucins in human airways. The MUC5AC region contains a gap in the human genome reference (hg19) across the large, highly repetitive, and complex central exon. This exon is predicted to contain imperfect tandem repeat sequences and multiple conserved cysteine-rich (CysD) domains. To resolve the MUC5AC genomic gap, we used high-fidelity long PCR followed by single molecule real-time (SMRT) sequencing. This technology yielded long sequence reads and robust coverage that allowed for de novo sequence assembly spanning the entire repetitive region. Furthermore, we used SMRT sequencing of PCR amplicons covering the central exon to identify genetic variation in four individuals. The results demonstrated the presence of segmental duplications of CysD domains, insertions/deletions (indels) of tandem repeats, and single nucleotide variants. Additional studies demonstrated that one of the identified tandem repeat insertions is tagged by nonexonic single nucleotide polymorphisms. Taken together, these data illustrate the successful utility of SMRT sequencing long reads for de novo assembly of large repetitive sequences to fill the gaps in the human genome. Characterization of the MUC5AC gene and the sequence variation in the central exon will facilitate genetic and functional studies for this critical airway mucin.
PMCID: PMC3930937  PMID: 24010879
MUC5AC; single molecule real time sequencing; segmental duplication; PacBio; repetitive sequence
10.  Histamine Stimulates Hydrogen Peroxide Production by Bronchial Epithelial Cells via Histamine H1 Receptor and Dual Oxidase 
Oxidative stress has been implicated in the pathogenesis of bronchial asthma. Besides granulocytes, the airway epithelium can produce large amounts of reactive oxygen species and can contribute to asthma-related oxidative stress. Histamine is a major inflammatory mediator present in large quantities in asthmatic airways. Whether histamine triggers epithelium-derived oxidative stress is unknown. We therefore aimed at characterizing human airway epithelial H2O2 production stimulated by histamine. We found that air–liquid interface cultures of primary human bronchial epithelial cells (BECs) and an immortalized BEC model (Cdk4/hTERT HBEC) produce H2O2 in response to histamine. The main source of airway epithelial H2O2 is an NADPH dual oxidase, Duox1. Out of the four histamine receptors (H1R–H4R), H1R has the highest expression in BECs and mediates the H2O2–producing effects of histamine. IL-4 induces Duox1 gene and protein expression levels and enhances histamine-induced H2O2 production by epithelial cells. Using HEK-293 cells expressing Duox1 or Duox2 and endogenous H1R, histamine triggers an immediate intracellular calcium signal and H2O2 release. Overexpression of H1R further increases the oxidative output of Duox-expressing HEK-293 cells. Our observations show that BECs respond to histamine with Duox-mediated H2O2 production. These findings reveal a mechanism that could be an important contributor to oxidative stress characteristic of asthmatic airways, suggesting novel therapeutic targets for treating asthmatic airway disease.
PMCID: PMC3930938  PMID: 23962049
Duox; NADPH oxidase; asthma; airway epithelium; oxidative stress
11.  The Role of Vimentin Intermediate Filaments in the Progression of Lung Cancer 
There is an accumulation of evidence in the literature demonstrating the integral role of vimentin intermediate filaments (IFs) in the progression of lung cancers. Vimentin IF proteins have been implicated in many aspects of cancer initiation and progression, including tumorigenesis, epithelial-to-mesenchymal transition (EMT), and the metastatic spread of cancer. Specifically, vimentin IFs have been recognized as an essential component regulating EMT, major signal transduction pathways involved in EMT and tumor progression, cell migration and invasion, the positioning and anchorage of organelles, such as mitochondria, and cell–cell and cell–substrate adhesion. In tumorgenesis, vimentin forms a complex with 14-3-3 and beclin 1 to inhibit autophagy via an AKT-dependent mechanism. Vimentin is a canonical marker of EMT, and recent evidence has shown it to be an important regulator of cellular motility. Transcriptional regulation of vimentin through hypoxia-inducible factor-1 may be a potential driver of EMT. Finally, vimentin regulates 14-3-3 complexes and controls various intracellular signaling and cell cycle control pathways by depleting the availability of free 14-3-3. There are many exciting advances in our understanding of the complex role of vimentin IFs in cancer, pointing to the key role vimentin IFs may play in tumor progression.
PMCID: PMC3930939  PMID: 23980547
epithelial-to-mesenchymal transition; invadopodia; lung cancer; metastatic cascade; vimentin
12.  IL-1 Family Cytokines Drive Th2 and Th17 Cells to Innocuous Airborne Antigens 
Allergic asthma is commonly thought to result from dysregulated airway inflammatory responses to ubiquitous environmental antigens mediated by CD4+ T cells polarized to a Th2 or Th17 cell. However, the mechanisms involved in the development of these T-cell responses remain unknown. This study examines the effects of IL-1 family cytokines, such as IL-33 and IL-1β, on the development of antigen-specific Th2 and Th17 cells in the airway. We administered IL-1 family cytokines and model antigens, such as ovalbumin, into the airways of naive BALB/c mice, and examined the cellular and humoral immune responses. To investigate the immunologic mechanisms, we used IL-4 green fluorescent protein reporter mice and mice deficient in the Il4 gene. Innocuous antigens, such as endotoxin-free ovalbumin and short ragweed extract, did not sensitize naive mice when administered through the airways. However, when mice were exposed to the same antigens with IL-1β or IL-33, they developed IgE antibodies. In particular, IL-33 induced robust and long-lasting Th2 cells that produced a large quantity of IL-5 and IL-13 and asthma-like airway pathology. IL-1β induced Th17 cells. In naive, nonsensitized animals, IL-33 stimulated endogenous IL-4 expression by CD4+ T cells, which was critical for the polarization of CD4+ T cells to the Th2 type. In the absence of IL-4, mice developed Th17 cells and neutrophilic airway inflammation. In conclusion, IL-1 family cytokines possess a potent adjuvant activity to promote both Th2 and Th17 cells to innocuous airborne antigens, and they may play fundamental roles in the immunopathology of asthma.
PMCID: PMC3931108  PMID: 23837489
asthma; IL-1β; IL-33; antigen
13.  Mechanical Ventilation Causes Pulmonary Mitochondrial Dysfunction and Delayed Alveolarization in Neonatal Mice 
Hyperoxia inhibits pulmonary bioenergetics, causing delayed alveolarization in mice. We hypothesized that mechanical ventilation (MV) also causes a failure of bioenergetics to support alveolarization. To test this hypothesis, neonatal mice were ventilated with room air for 8 hours (prolonged) or for 2 hours (brief) with 15 μl/g (aggressive) tidal volume (Tv), or for 8 hours with 8 μl/g (gentle) Tv. After 24 hours or 10 days of recovery, lung mitochondria were examined for adenosine diphosphate (ADP)-phosphorylating respiration, using complex I (C-I)–dependent, complex II (C-II)–dependent, or cytochrome C oxidase (C-IV)–dependent substrates, ATP production rate, and the activity of C-I and C-II. A separate cohort of mice was exposed to 2,4-dinitrophenol (DNP), a known uncoupler of oxidative phosphorylation. At 10 days of recovery, pulmonary alveolarization and the expression of vascular endothelial growth factor (VEGF) were assessed. Sham-operated littermates were used as control mice. At 24 hours after aggressive MV, mitochondrial ATP production rates and the activity of C-I and C-II were significantly decreased compared with control mice. However, at 10 days of recovery, only mice exposed to prolonged–aggressive MV continued to exhibit significantly depressed mitochondrial respiration. This was associated with significantly poorer alveolarization and VEGF expression. In contrast, mice exposed to brief–aggressive or prolonged–gentle MV exhibited restored mitochondrial ADP-phosphorylation, normal alveolarization and pulmonary VEGF content. Exposure to DNP fully replicated the phenotype consistent with alveolar developmental arrest. Our data suggest that the failure of bioenergetics to support normal lung development caused by aggressive and prolonged ventilation should be considered a fundamental mechanism for the development of bronchopulmonary dysplasia in premature neonates.
PMCID: PMC3931106  PMID: 23980609
mechanical ventilation; mitochondrial dysfunction; alveolarization; bioenergetics; mouse model of BPD
14.  Airway-Specific Inducible Transgene Expression Using Aerosolized Doxycycline 
Tissue-specific transgene expression using tetracycline (tet)-regulated promoter/operator elements has been used to revolutionize our understanding of cellular and molecular processes. However, because most tet-regulated mouse strains use promoters of genes expressed in multiple tissues, to achieve exclusive expression in an organ of interest is often impossible. Indeed, in the extreme case, unwanted transgene expression in other organ systems causes lethality and precludes the study of the transgene in the actual organ of interest. Here, we describe a novel approach to activating tet-inducible transgene expression solely in the airway by administering aerosolized doxycycline. By optimizing the dose and duration of aerosolized doxycycline exposure in mice possessing a ubiquitously expressed Rosa26 promoter–driven reverse tet-controlled transcriptional activator (rtTA) element, we induce transgene expression exclusively in the airways. We detect no changes in the cellular composition or proliferative behavior of airway cells. We used this newly developed method to achieve airway basal stem cell–specific transgene expression using a cytokeratin 5 (also known as keratin 5)–driven rtTA driver line to induce Notch pathway activation. We observed a more robust mucous metaplasia phenotype than in mice receiving doxycycline systemically. In addition, unwanted phenotypes outside of the lung that were evident when doxycycline was received systemically were now absent. Thus, our approach allows for rapid and efficient airway-specific transgene expression. After the careful strain by strain titration of the dose and timing of doxycycline inhalation, a suite of preexisting transgenic mice can now be used to study airway biology specifically in cases where transient transgene expression is sufficient to induce a phenotype.
PMCID: PMC3931107  PMID: 23848320
airway-specific; aerosolized doxycycline; inhalation; Notch; mucous metaplasia
15.  Protective Role of IL-6 in Vascular Remodeling in Schistosoma Pulmonary Hypertension 
Schistosomiasis is one of the most common causes of pulmonary arterial hypertension worldwide, but the pathogenic mechanism by which the host inflammatory response contributes to vascular remodeling is unknown. We sought to identify signaling pathways that play protective or pathogenic roles in experimental Schistosoma-induced pulmonary vascular disease via whole-lung transcriptome analysis. Wild-type mice were experimentally exposed to Schistosoma mansoni ova by intraperitoneal sensitization followed by tail-vein augmentation, and the phenotype was assessed by right ventricular catheterization and tissue histology, as well as RNA and protein analysis. Whole-lung transcriptome analysis by microarray and RNA sequencing was performed, and RNA sequencing was analyzed according to two bioinformatics methods. Functional testing of the candidate IL-6 pathway was determined using IL-6 knockout mice and the signal transducers and activators of transcription protein–3 (STAT3) inhibitor S3I-201. Wild-type mice exposed to S. mansoni demonstrated increased right ventricular systolic pressure and thickness of the pulmonary vascular media. Whole-lung transcriptome analysis determined that the IL-6–STAT3–nuclear factor of activated T cells c2(NFATc2) pathway was up-regulated, as confirmed by PCR and the immunostaining of lung tissue from S. mansoni–exposed mice and patients who died of the disease. Mice lacking IL-6 or treated with S3I-201 developed pulmonary hypertension, associated with significant intima remodeling after exposure to S. mansoni. Whole-lung transcriptome analysis identified the up-regulation of the IL-6–STAT3–NFATc2 pathway, and IL-6 signaling was found to be protective against Schistosoma-induced intimal remodeling.
PMCID: PMC3931110  PMID: 23815102
pulmonary hypertension; schistosomiasis; gene expression profiling; IL-6
16.  Peptidoglycan Recognition Protein 1 Promotes House Dust Mite–Induced Airway Inflammation in Mice 
Peptidoglycan recognition protein (Pglyrp) 1 is a pattern-recognition protein that mediates antibacterial host defense. Because we had previously shown that Pglyrp1 expression is increased in the lungs of house dust mite (HDM)-challenged mice, we hypothesized that it might modulate the pathogenesis of asthma. Wild-type and Pglyrp1−/− mice on a BALB/c background received intranasal HDM or saline, 5 days/week for 3 weeks. HDM-challenged Pglyrp1−/− mice showed decreases in bronchoalveolar lavage fluid eosinophils and lymphocytes, serum IgE, and mucous cell metaplasia, whereas airway hyperresponsiveness was not changed when compared with wild-type mice. T helper type 2 (Th2) cytokines were reduced in the lungs of HDM-challenged Pglyrp1−/− mice, which reflected a decreased number of CD4+ Th2 cells. There was also a reduction in C-C chemokines in bronchoalveolar lavage fluid and lung homogenates from HDM-challenged Pglyrp1−/− mice. Furthermore, secretion of CCL17, CCL22, and CCL24 by alveolar macrophages from HDM-challenged Pglyrp1−/− mice was markedly reduced. As both inflammatory cells and airway epithelial cells express Pglyrp1, bone marrow transplantation was performed to generate chimeric mice and assess which cell type promotes HDM-induced airway inflammation. Chimeric mice lacking Pglyrp1 on hematopoietic cells, not structural cells, showed a reduction in HDM-induced eosinophilic and lymphocytic airway inflammation. We conclude that Pglyrp1 expressed by hematopoietic cells, such as alveolar macrophages, mediates HDM-induced airway inflammation by up-regulating the production of C-C chemokines that recruit eosinophils and Th2 cells to the lung. This identifies a new family of innate immune response proteins that promotes HDM-induced airway inflammation in asthma.
PMCID: PMC3931111  PMID: 23808363
asthma; house dust mite; innate immunity; pattern recognition proteins; peptidoglycan recognition protein 1
17.  Cys-Leukotrienes Promote Fibrosis in a Mouse Model of Eosinophil-Mediated Respiratory Inflammation 
Leukotrienes (i.e., products of the 5-lipoxygenase pathway) are thought to be contributors to lung pathologies. Moreover, eosinophils have been linked with pulmonary leukotriene activities both as potential sources of these mediators and as responding effector cells. The objective of the present study was to define the role(s) of leukotrienes in the lung pathologies accompanying eosinophil-associated chronic respiratory inflammation. A transgenic mouse model of chronic T helper (Th) 2–driven inflammation expressing IL-5 from T cells and human eotaxin-2 locally in the lung (I5/hE2) was used to define potential in vivo relationships among eosinophils, leukotrienes, and chronic Th2-polarized pulmonary inflammation. Airway levels of cys-leukotrienes and leukotriene B4 (LTB4) are both significantly elevated in I5/hE2 mice. The eosinophil-mediated airway hyperresponsiveness (AHR) characteristic of these mice was abolished in the absence of leukotrienes (i.e., 5-lipoxygenase–deficient I5/hE2). More importantly, the loss of leukotrienes led to an unexpectedly significant decrease in collagen deposition (i.e., pulmonary fibrosis) that accompanied elevated levels of IL-4/-13 and TGF-β in the lungs of I5/hE2 mice. Further studies using mice deficient for the LTB4 receptor (BLT-1−/−/I5/hE2) and I5/hE2 animals administered a cys-leukotriene receptor antagonist (montelukast) demonstrated that the AHR and the enhanced pulmonary fibrosis characteristic of the I5/hE2 model were uniquely cys-leukotriene–mediated events. These data demonstrate that, similar to allergen challenge models of wild-type mice, cys-leukotrienes underlie AHR in this transgenic model of severe pulmonary Th2 inflammation. These data also suggest that an underappreciated link exists among eosinophils, cys-leukotriene–mediated events, and fibrotic remodeling associated with elevated levels of IL-4/-13 and TGF-β.
PMCID: PMC3931112  PMID: 23859654
5-lipoxygenase; asthma; eosinophils; montelukast; lung
18.  Molecular Magnetic Resonance Imaging of Pulmonary Fibrosis in Mice 
Idiopathic pulmonary fibrosis is a chronic, progressive, fibrosing interstitial pneumonia of unknown cause resulting in dyspnea and functional decline until death. There are currently no effective noninvasive tools to monitor disease progression and response to treatment. The objective of the present study was to determine whether molecular magnetic resonance imaging of the lung using a probe targeted to type I collagen could provide a direct, noninvasive method for assessment of pulmonary fibrosis in a mouse model. Pulmonary fibrosis was generated in mice by transtracheal instillation of bleomycin (BM). Six cohorts were imaged before and immediately after intravenous administration of molecular imaging probe: (1) BM plus collagen-targeted probe, EP-3533; (2) sham plus EP-3533; (3) BM plus nonbinding control probe, EP-3612; (4) sham plus EP-3612; (5) BM plus EP-3533 imaged early; and (6) BM plus EP-3533 imaged late. Signal-to-noise ratio (SNR) enhancement was quantified in the lungs and muscle. Lung tissue was subjected to pathologic scoring of fibrosis and analyzed for gadolinium and hydroxyproline. BM-treated mice had 35% higher lung collagen than sham mice (P < 0.0001). The SNR increase in the lungs of fibrotic mice after EP-3533 administration was twofold higher than in sham animals and twofold higher than in fibrotic or sham mice that received control probe, EP-3612 (P < 0.0001). The SNR increase in muscle was similar for all cohorts. For EP-3533, we observed a strong, positive, linear correlation between lung SNR increase and hydroxyproline levels (r = 0.72). Collagen-targeted probe EP-3533–enhanced magnetic resonance imaging specifically detects pulmonary fibrosis in a mouse model of disease.
PMCID: PMC3931113  PMID: 23927643
molecular imaging; gadolinium; type I collagen; bleomycin; EP-3533
19.  Human Tracheobronchial Basal Cells. Normal versus Remodeling/Repairing Phenotypes In Vivo and In Vitro 
Human tracheobronchial epithelial (TBE) basal cells (BCs) function as progenitors in normal tissue. However, mechanistic studies are typically performed in vitro and frequently use BCs recovered from patients who die of nonrespiratory disease. It is not known whether the cadaveric epithelium (1) is undergoing homeostatic remodeling and/or repair, or (2) yields BC clones that represent homeostatic processes identified in tissue. We sought to compare the phenotype of TBE-BCs with that of BCs cultured under optimal clone-forming conditions. TBE pathology was evaluated using quantitative histomorphometry. The cultured BC phenotype was determined by fluorescence-activated cell sorter analysis. Clone organization and cell phenotype were determined by immunostaining. The cadaveric TBE is 20% normal. In these regions, BCs are keratin (K)-5+ and tetraspanin CD151+, and demonstrate a low mitotic index. In contrast, 80% of the cadaveric TBE exhibits homeostatic remodeling/repair processes. In these regions, BCs are K5+/K14+, and a subset expresses tissue factor (TF). Passage 1 TBE cells are BCs that are K5+/TF+, and half coexpress CD151. Optimal clone formation conditions use an irradiated NIH3T3 fibroblast feeder layer (American Type Culture Collection, Frederick, MD) and serum-supplemented Epicult-B medium (Stemcell Technologies, La Jolla, CA). The TF+/CD151− BC subpopulation is the most clonogenic BC subtype, and is enriched with K14+ cells. TF+/CD151− BCs generate clones containing BCs that are K5+/Trp63+, but K14−/CD151−. TF+ cells are limited to the clone edge. In conclusion, clonogenic human TBE BCs (1) exhibit a molecular phenotype that is a composite of the normal and remodeling/reparative BC phenotypes observed in tissue, and (2) generate organoid clones that contain phenotypically distinct BC subpopulations.
PMCID: PMC3931114  PMID: 23927678
basal cell; remodeling; clonogenic frequency; phenotypic plasticity; stem cell
20.  Asbestos-Induced Alveolar Epithelial Cell Apoptosis. The Role of Endoplasmic Reticulum Stress Response 
Asbestos exposure results in pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully understood. Alveolar epithelial cell (AEC) apoptosis is important in the development of pulmonary fibrosis after exposure to an array of toxins, including asbestos. An endoplasmic reticulum (ER) stress response and mitochondria-regulated (intrinsic) apoptosis occur in AECs of patients with idiopathic pulmonary fibrosis, a disease with similarities to asbestosis. Asbestos induces AEC intrinsic apoptosis, but the role of the ER is unclear. The objective of this study was to determine whether asbestos causes an AEC ER stress response that promotes apoptosis. Using human A549 and rat primary isolated alveolar type II cells, amosite asbestos fibers increased AEC mRNA and protein expression of ER stress proteins involved in the unfolded protein response, such as inositol-requiring kinase (IRE) 1 and X-box–binding protein-1, as well as ER Ca²2+ release ,as assessed by a FURA-2 assay. Eukarion-134, a superoxide dismutase/catalase mimetic, as well as overexpression of Bcl-XL in A549 cells each attenuate asbestos-induced AEC ER stress (IRE-1 and X-box–binding protein-1 protein expression; ER Ca²2+ release) and apoptosis. Thapsigargin, a known ER stress inducer, augments AEC apoptosis, and eukarion-134 or Bcl-XL overexpression are protective. Finally, 4-phenylbutyric acid, a chemical chaperone that attenuates ER stress, blocks asbestos- and thapsigargin-induced AEC IRE-1 protein expression, but does not reduce ER Ca²2+ release or apoptosis. These results show that asbestos triggers an AEC ER stress response and subsequent intrinsic apoptosis that is mediated in part by ER Ca²2+ release.
PMCID: PMC3931115  PMID: 23885834
alveolar epithelium; asbestos; mitochondria; endoplasmic reticulum; apoptosis
21.  Lysophosphatidic Acid Receptor–2 Deficiency Confers Protection against Bleomycin-Induced Lung Injury and Fibrosis in Mice 
Idiopathic pulmonary fibrosis is a devastating disease characterized by alveolar epithelial cell injury, the accumulation of fibroblasts/myofibroblasts, and the deposition of extracellular matrix proteins. Lysophosphatidic acid (LPA) signaling through its G protein–coupled receptors is critical for its various biological functions. Recently, LPA and LPA receptor 1 were implicated in lung fibrogenesis. However, the role of other LPA receptors in fibrosis remains unclear. Here, we use a bleomycin-induced pulmonary fibrosis model to investigate the roles of LPA2 in pulmonary fibrogenesis. In the present study, we found that LPA2 knockout (Lpar2−/−) mice were protected against bleomycin-induced lung injury, fibrosis, and mortality, compared with wild-type control mice. Furthermore, LPA2 deficiency attenuated the bleomycin-induced expression of fibronectin (FN), α–smooth muscle actin (α-SMA), and collagen in lung tissue, as well as levels of IL-6, transforming growth factor–β (TGF-β), and total protein in bronchoalveolar lavage fluid. In human lung fibroblasts, the knockdown of LPA2 attenuated the LPA-induced expression of TGF-β1 and the differentiation of lung fibroblasts to myofibroblasts, resulting in the decreased expression of FN, α-SMA, and collagen, as well as decreased activation of extracellular regulated kinase 1/2, Akt, Smad3, and p38 mitogen-activated protein kinase. Moreover, the knockdown of LPA2 with small interfering RNA also mitigated the TGF-β1–induced differentiation of lung fibroblasts. In addition, LPA2 deficiency significantly attenuated the bleomycin-induced apoptosis of alveolar and bronchial epithelial cells in the mouse lung. Together, our data indicate that the knockdown of LPA2 attenuated bleomycin-induced lung injury and pulmonary fibrosis, and this may be related to an inhibition of the LPA-induced expression of TGF-β and the activation and differentiation of fibroblasts.
PMCID: PMC3931116  PMID: 23808384
lysophosphatidic acid; LPA2; idiopathic pulmonary fibrosis; transforming growth factor–β
22.  Interleukin-33 Potentiates Bleomycin-Induced Lung Injury 
The mechanisms of interstitial lung disease (ILD) remain incompletely understood, although recent observations have suggested an important contribution by IL-33. Substantial elevations in IL-33 expression were found in the lungs of patients with idiopathic pulmonary fibrosis and scleroderma lung disease, as well as in the bleomycin injury mouse model. Most of the observed IL-33 expression was intracellular and intranuclear, suggesting involvement of the full-length (fl) protein, but not of the proteolytically processed mature IL-33 cytokine. The effects of flIL-33 on mouse lungs were assessed independently and in combination with bleomycin injury, using recombinant adenovirus–mediated gene delivery. Bleomycin-induced changes were not affected by gene deficiency of the IL-33 receptor T1/ST2. Combined flIL-33 expression and bleomycin injury exerted a synergistic effect on pulmonary lymphocyte and collagen accumulation, which could be explained by synergistic regulation of the cytokines transforming growth factor–β, IL-6, monocyte chemotactic protein–1, macrophage inflammatory protein\x{2013}1α, and tumor necrosis factor-α. By contrast, no increase in the levels of the Th2 cytokines IL-4, IL-5, or IL-13 was evident. Moreover, flIL-33 was found to increase the expression of several heat shock proteins (HSPs) significantly, and in particular HSP70, which is known to be associated with ILD. Thus, flIL-33 is a synergistic proinflammatory and profibrotic regulator that acts by stimulating the expression of several non-Th2 cytokines, and activates the expression of HSP70.
PMCID: PMC3931117  PMID: 23837438
IL-33; interstitial lung disease; inflammation; fibrosis; lymphocytes
23.  Foxa2 Regulates Leukotrienes to Inhibit Th2-mediated Pulmonary Inflammation 
Foxa2 is a member of the Forkhead family of nuclear transcription factors that is highly expressed in respiratory epithelial cells of the developing and mature lung. Foxa2 is required for normal airway epithelial differentiation, and its deletion causes goblet-cell metaplasia and Th2-mediated pulmonary inflammation during postnatal development. Foxa2 expression is inhibited during aeroallergen sensitization and after stimulation with Th2 cytokines, when its loss is associated with goblet-cell metaplasia. Mechanisms by which Foxa2 controls airway epithelial differentiation and Th2 immunity are incompletely known. During the first 2 weeks after birth, the loss of Foxa2 increases the production of leukotrienes (LTs) and Th2 cytokines in the lungs of Foxa2 gene–targeted mice. Foxa2 expression inhibited 15-lipoxygenase (Alox15) and increased Alox5 transcription, each encoding key lipoxygenases associated with asthma. The inhibition of the cysteinyl LT (CysLT) signaling pathway by montelukast inhibited IL-4, IL-5, eotaxin-2, and regulated upon activation normal T cell expressed and presumably secreted expression in the developing lungs of Foxa2 gene–targeted mice. Montelukast inhibited the expression of genes regulating mucus metaplasia, including Spdef, Muc5ac, Foxa3, and Arg2. Foxa2 plays a cell-autonomous role in the respiratory epithelium, and is required for the suppression of Th2 immunity and mucus metaplasia in the developing lung in a process determined in part by its regulation of the CysLT pathway.
PMCID: PMC3931118  PMID: 23822876
Foxa2; leukotriene; Th2 inflammation; mucous metaplasia
24.  Endothelial Cells Recruit Macrophages and Contribute to a Fibrotic Milieu in Bleomycin Lung Injury 
Systemic sclerosis (SSc) is a systemic autoimmune disease that causes inflammation, vasculopathy, and fibrosis of the skin and internal organs. One of the most severe complications of SSc involves the development of pulmonary fibrosis. Endothelial cell injury precedes the development of fibrosis, and is believed to be an initiating event. Therefore, we aimed to characterize the role of endothelial cells in the progression of pulmonary fibrosis, using a well-established bleomycin (BLM) model of pulmonary fibrosis. Endothelial cells were isolated by cell sorting, and the analysis of gene expression was performed with quantitative RT-PCR. Endothelial injury was induced between the first and second week, as shown by the elevated expression of the vascular injury markers matrix metallopeptidase–12 and von Willebrand factor. After injury, endothelial activation was indicated by the up-regulation of selectins, CCL chemokines, and inflammatory mediators, including complement anaphylatoxin receptors (C3aR and C5aR), oncostatin M, and leukemia inhibitory factor. The endothelial cell overexpression of fibrotic mediators, including connective tissue growth factor, plasminogen activator inhibitor–1, osteopontin, fibronectin, and fibroblast specific protein–1, was observed in the second and fourth weeks. This study suggests that endothelial cells actively contribute to the disease process via multiple mechanisms, including the recruitment of inflammatory cells and the establishment of a profibrotic environment during the development of BLM-induced pulmonary fibrosis.
PMCID: PMC3931119  PMID: 23885794
bleomycin; endothelial cells; pulmonary fibrosis; systemic sclerosis; idiopathic pulmonary fibrosis
25.  In Utero Exposure to Second-Hand Smoke Aggravates the Response to Ovalbumin in Adult Mice 
Second-hand smoke (SHS) exposure in utero exacerbates adult responses to environmental irritants. We tested the hypothesis that effects of in utero SHS exposure on modulating physiological and transcriptome responses in BALB/c mouse lungs after ovalbumin (OVA) challenge extend well into adulthood, and that the responses show a sex bias. We exposed BALB/c mice in utero to SHS or filtered air (AIR), then sensitized and challenged all offspring with OVA from 19 to 23 weeks of age. At the end of the adult OVA challenge, we evaluated pulmonary function, examined histopathology, analyzed bronchoalveolar lavage fluid (BALF), and assessed gene expression changes in the lung samples. All groups exhibited lung inflammation and inflammatory cell infiltration. Pulmonary function testing (airway hyperresponsiveness [AHR], breathing frequency [f]) and BALF (cell differentials, Th1/Th2 cytokines) assessments showed significantly more pronounced lung responses in the SHS-OVA groups than in AIR-OVA groups (AHR, f; eosinophils, neutrophils; IFN-γ, IL-1b, IL-4, IL-5, IL-10, IL-13, KC/CXCL1, TNF-α), with the majority of responses being more pronounced in males than in females. SHS exposure in utero also significantly altered lung gene expression profiles, primarily of genes associated with inflammatory responses and respiratory diseases, including lung cancer and lung fibrosis. Altered expression profiles of chemokines (Cxcl2, Cxcl5, Ccl8, Ccl24), cytokines (Il1b, Il6, Il13) and acute phase response genes (Saa1, Saa3) were confirmed by qRT-PCR. In conclusion, in utero exposure to SHS exacerbates adult lung responses to OVA challenge and promotes a pro-asthmatic milieu in adult lungs; further, males are generally more affected by SHS-OVA than are females.
PMCID: PMC3931120  PMID: 23898987
second-hand smoke; in utero exposure; mouse asthma model; inflammation; gene regulation

Results 1-25 (1015)