PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Ozone Enhances Pulmonary Innate Immune Response to a Toll-Like Receptor–2 Agonist 
Previous work demonstrated that pre-exposure to ozone primes innate immunity and increases Toll-like receptor–4 (TLR4)–mediated responses to subsequent stimulation with LPS. To explore the pulmonary innate immune response to ozone exposure further, we investigated the effects of ozone in combination with Pam3CYS, a synthetic TLR2/TLR1 agonist. Whole-lung lavage (WLL) and lung tissue were harvested from C57BL/6 mice after exposure to ozone or filtered air, followed by saline or Pam3CYS 24 hours later. Cells and cytokines in the WLL, the surface expression of TLRs on macrophages, and lung RNA genomic expression profiles were examined. We demonstrated an increased WLL cell influx, increased IL-6 and chemokine KC (Cxcl1), and decreased macrophage inflammatory protein (MIP)-1α and TNF-α in response to Pam3CYS as a result of ozone pre-exposure. We also observed the increased cell surface expression of TLR4, TLR2, and TLR1 on macrophages as a result of ozone alone or in combination with Pam3CYS. Gene expression analysis of lung tissue revealed a significant increase in the expression of genes related to injury repair and the cell cycle as a result of ozone alone or in combination with Pam3CYS. Our results extend previous findings with ozone/LPS to other TLR ligands, and suggest that the ozone priming of innate immunity is a general mechanism. Gene expression profiling of lung tissue identified transcriptional networks and genes that contribute to the priming of innate immunity at the molecular level.
doi:10.1165/rcmb.2012-0187OC
PMCID: PMC3547086  PMID: 23002100
ozone; Toll-like receptors; air pollution; gene expression profiles; macrophages
2.  Novel Regulators of the Systemic Response to Lipopolysaccharide 
Our understanding of the role that host genetic factors play in the initiation and severity of infections caused by gram-negative bacteria is incomplete. To identify novel regulators of the host response to lipopolysaccharide (LPS), 11 inbred murine strains were challenged with LPS systemically. In addition to two strains lacking functional TLR4 (C3H/HeJ and C57BL/6JTLR4−/−), three murine strains with functional TLR4 (C57BL/6J, 129/SvImJ, and NZW/LacJ) were found to be relatively resistant to systemic LPS challenge; the other six strains were classified as sensitive. RNA from lung, liver, and spleen tissue was profiled on oligonucleotide microarrays to determine if unique transcripts differentiate susceptible and resistant strains. Gene expression analysis identified the Hedgehog signaling pathway and a number of transcription factors (TFs) involved in the response to LPS. RNA interference–mediated inhibition of six TFs (C/EBP, Cdx-2, E2F1, Hoxa4, Nhlh1, and Tead2) was found to diminish IL-6 and TNF-α production by murine macrophages. Mouse lines with targeted mutations were used to verify the involvement of two novel genes in innate immunity. Compared with wild-type control mice, mice deficient in the E2F1 transcription factor were found to have a reduced inflammatory response to systemic LPS, and mice heterozygote for Ptch, a gene involved in Hedgehog signaling, were found to be more responsive to systemic LPS. Our analysis of gene expression data identified novel pathways and transcription factors that regulate the host response to systemic LPS. Our results provide potential sepsis biomarkers and therapeutic targets that should be further investigated in human populations.
doi:10.1165/rcmb.2010-0342OC
PMCID: PMC3175565  PMID: 21131441
endotoxic shock; gram-negative sepsis; inbred murine strains; gene expression; microarray; transcription factor
3.  Strain-Dependent Genomic Factors Affect Allergen-Induced Airway Hyperresponsiveness in Mice 
Asthma is etiologically and clinically heterogeneous, making the genomic basis of asthma difficult to identify. We exploited the strain-dependence of a murine model of allergic airway disease to identify different genomic responses in the lung. BALB/cJ and C57BL/6J mice were sensitized with the immunodominant allergen from the Dermatophagoides pteronyssinus species of house dust mite (Der p 1), without exogenous adjuvant, and the mice then underwent a single challenge with Der p 1. Allergic inflammation, serum antibody titers, mucous metaplasia, and airway hyperresponsiveness were evaluated 72 hours after airway challenge. Whole-lung gene expression analyses were conducted to identify genomic responses to allergen challenge. Der p 1–challenged BALB/cJ mice produced all the key features of allergic airway disease. In comparison, C57BL/6J mice produced exaggerated Th2-biased responses and inflammation, but exhibited an unexpected decrease in airway hyperresponsiveness compared with control mice. Lung gene expression analysis revealed genes that were shared by both strains and a set of down-regulated genes unique to C57BL/6J mice, including several G-protein–coupled receptors involved in airway smooth muscle contraction, most notably the M2 muscarinic receptor, which we show is expressed in airway smooth muscle and was decreased at the protein level after challenge with Der p 1. Murine strain–dependent genomic responses in the lung offer insights into the different biological pathways that develop after allergen challenge. This study of two different murine strains demonstrates that inflammation and airway hyperresponsiveness can be decoupled, and suggests that the down-modulation of expression of G-protein–coupled receptors involved in regulating airway smooth muscle contraction may contribute to this dissociation.
doi:10.1165/rcmb.2010-0315OC
PMCID: PMC3208613  PMID: 21378263
asthma; airway hyperresponsiveness; inflammation; house dust mite; Der p 1
4.  Nitric Oxide Mediates Relative Airway Hyporesponsiveness to Lipopolysaccharide in Surfactant Protein A–Deficient Mice 
Surfactant protein A (SP-A) mediates innate immune cell responses to LPS, a cell wall component of gram-negative bacteria that is found ubiquitously in the environment and is associated with adverse health effects. Inhaled LPS induces lung inflammation and increases airway responsiveness (AR). However, the role of SP-A in mediating LPS-induced AR is not well-defined. Nitric oxide (NO) is described as a potent bronchodilator, and previous studies showed that SP-A modulates the LPS-induced production of NO. Hence, we tested the hypothesis that increased AR, observed in response to aerosolized LPS exposure, would be significantly reduced in an SP-A–deficient condition. Wild-type (WT) and SP-A null (SP-A−/−) mice were challenged with aerosolized LPS. Results indicate that despite similar inflammatory indices, LPS-treated SP-A−/− mice had attenuated AR after methacholine challenge, compared with WT mice. The attenuated AR could not be attributed to inherent differences in SP-D concentrations or airway smooth muscle contractile and relaxation properties, because these measures were similar between WT and SP-A−/− mice. LPS-treated SP-A−/− mice, however, had elevated nitrite concentrations, inducible nitric oxide synthase (iNOS) expression, and NOS activity in their lungs. Moreover, the administration of the iNOS-specific inhibitor 1400W completely abrogated the attenuated AR. Thus, when exposed to aerosolized LPS, SP-A−/− mice demonstrate a relative airway hyporesponsiveness that appears to be mediated at least partly via an iNOS-dependent mechanism. These findings may have clinical significance, because recent studies reported associations between surfactant protein polymorphisms and a variety of lung diseases.
doi:10.1165/rcmb.2009-0284OC
PMCID: PMC3049231  PMID: 20348208
surfactant protein A; lipopolysaccharide; airway responsiveness
5.  Both Hematopoietic-Derived and Non–Hematopoietic-Derived β-Arrestin–2 Regulates Murine Allergic Airway Disease 
Allergic asthma, a major cause of morbidity and leading cause of hospitalizations, is an inflammatory disease orchestrated by T helper cells and characterized by the lung migration of eosinophils, which are important asthma effector cells. Lung migration of inflammatory cells requires, among other events, the chemokine receptor transduction of lung-produced inflammatory chemokines. Despite the widespread prevalence of this disease, the molecular mechanisms regulating chemokine production and receptor regulation in asthma are poorly understood. Previous work from our laboratory demonstrated that β-arrestin−2 positively regulates the development of allergic airway disease in a mouse model, partly through positive regulation of T-lymphocyte chemotaxis to the lung. However, β-arrestin−2 is expressed in many cell types, including other hematopoietic cells and lung structural cells, which are involved in the development and manifestation of allergic airway disease. To determine the cell types required for β-arrestin–2–dependent allergic inflammation, we generated bone marrow chimera mice. Using the ovalbumin murine model of allergic airway disease, we show that eosinophilic and lymphocytic inflammation is restored in chimeric mice, with expression of β-arrestin−2 exclusively on hematopoietic-derived cell types. In contrast, airway hyperresponsiveness is dependent on the expression of β-arrestin−2 in structural cells. Our data demonstrate that the expression of β-arrestin−2 in at least two divergent cell types contributes to the pathogenesis of allergic airway disease.
doi:10.1165/rcmb.2009-0198OC
PMCID: PMC2933545  PMID: 19805483
asthma; bone marrow transplant; β-arrestin-2; airway hyperresponsiveness
6.  Fine Ambient Particles Induce Oxidative Stress and Metal Binding Genes in Human Alveolar Macrophages 
Exposure to pollutant particles increased respiratory morbidity and mortality. The alveolar macrophages (AMs) are one cell type in the lung directly exposed to particles. Upon contact with particles, AMs are activated and produce reactive oxygen species, but the scope of this oxidative stress response remains poorly defined. In this study, we determined the gene expression profile in human AMs exposed to particles, and sought to characterize the global response of pro- and antioxidant genes. We exposed AMs obtained by bronchoscopy from normal individuals to Chapel Hill particulate matter of 2.5-μm diameter or smaller (PM2.5; 1 μg/ml) or vehicle for 4 hours (n = 6 independent samples). mRNAs were extracted, amplified, and hybridized to Agilent human 1A microarray. Significant genes were identified by significance analysis of microarrays (false discovery rate, 10%; P ≤ 0.05) and mapped with Gene Ontology in the Database for Annotation, Visualization, and Integrated Discovery. We found 34 and 41 up- and down-regulated genes, respectively; 22 genes (∼30%) were involved in metal binding, and 11 were linked to oxidative stress, including up-regulation of five metallothionein (MT)-1 isoforms. Exogenous MT1 attenuated PM2.5-induced H2O2 release. PM2.5 premixed with MT1 stimulated less H2O2 release. Knockdown of MT1F gene increased PM2.5-induced H2O2 release. PM2.5 at 1 μg/ml did not increase H2O2 release. Mount St. Helens PM2.5 and acid-extracted Chapel Hill PM2.5, both poor in metals, did not induce MT1F or H2O2 release. Our results show that PM2.5 induced a gene expression profile prevalent with genes related to metal binding and oxidative stress in human AMs, independent of oxidative stress. Metals associated with PM may play an important role in particle-induced gene changes.
doi:10.1165/rcmb.2008-0064OC
PMCID: PMC2778161  PMID: 19251948
particulate matter; air pollution; microarray; metallothionein
7.  Chronic LPS Inhalation Causes Emphysema-Like Changes in Mouse Lung that Are Associated with Apoptosis 
Lipopolysaccharide (LPS) is ubiquitous in the environment. Recent epidemiologic data suggest that occupational exposure to inhaled LPS can contribute to the progression of chronic obstructive pulmonary disease. To address the hypothesis that inhaled LPS can cause emphysema-like changes in mouse pulmonary parenchyma, we exposed C57BL/6 mice to aerosolized LPS daily for 4 weeks. By 3 days after the end of the 4-week exposure, LPS-exposed mice developed enlarged airspaces that persisted in the 4-week recovered mice. These architectural alterations in the lung are associated with enhanced type I, III, and IV procollagen mRNA as well as elevated levels of matrix metalloproteinase (MMP)-9 mRNA, all of which have been previously associated with human emphysema. Interestingly, MMP-9–deficient mice were not protected from the development of LPS-induced emphysema. However, we demonstrate that LPS-induced airspace enlargement was associated with apoptosis within the lung parenchyma, as shown by prominent TUNEL staining and elevated cleaved caspase 3 immunoreactivity. Antineutrophil antiserum-treated mice were partially protected from the lung destruction caused by chronic inhalation of LPS. Taken together, these findings demonstrate that inhaled LPS can cause neutrophil-dependent emphysematous changes in lung architecture that are associated with apoptosis and that these changes may be occurring through mechanisms different than those induced by cigarette smoke.
doi:10.1165/rcmb.2007-0448OC
PMCID: PMC2574529  PMID: 18539952
8.  CD44 Regulates Macrophage Recruitment to the Lung in Lipopolysaccharide-Induced Airway Disease 
LPS from bacteria is ubiquitous in the environment and can cause airway disease and modify allergic asthma. Identification of gene products that modulate the biologic response to inhaled LPS will improve our understanding of inflammatory airways disease. Previous work has identified quantitative trait loci for the response to inhaled LPS on chromosomes 2 and 11. In these regions, 28 genes had altered RNA expression after inhalation of LPS, including CD44, which was associated with differences in both TNF-α levels and neutrophil recruitment into the lung. It has previously been shown that CD44 can modulate macrophage recruitment in response to Mycobacterium tuberculosis, as well as clearance of neutrophils after lung injury with both bleomycin and live Escherichia coli bacteria. In this study, we demonstrate that the biologic response to inhaled LPS is modified by CD44. Macrophages failed to be recruited to the lungs of CD44-deficient animals at all time points after LPS exposure. CD44-deficient macrophages showed reduced motility in a Transwell migration assay, reduced ability to secrete the proinflammatory cytokine TNF-α, reduced in vivo migration in response to monocyte chemotactic protein-1, and diminished adhesion to vascular endothelia in the presence of TNF-α. In addition, CD44-deficient animals had 150% fewer neutrophils at 24 h and 50% greater neutrophils 48 h after LPS exposure. These results support the role of CD44 in modulating the biologic response to inhaled LPS.
doi:10.1165/rcmb.2006-0363OC
PMCID: PMC1976546  PMID: 17446529
lung; environment; tlr4; hyaluronan; endotoxin
9.  Leukocyte-Derived IL-10 Reduces Subepithelial Fibrosis Associated with Chronically Inhaled Endotoxin 
Endotoxin (LPS), a Gram-negative cell wall component, has potent proinflammatory properties. Acute LPS exposure causes airway inflammation; chronic exposure causes airway hyperreactivity and remodeling. IL-10 is an important antiinflammatory cytokine, which is decreased in patients with airway disease, such as asthma and cystic fibrosis. To examine the physiologic and therapeutic role of IL-10 in acute and chronic LPS-induced airway disease. Mice were exposed to aerosolized LPS once or daily for 4 wk. Endpoints were airway inflammation, airway reactivity to methacholine, extracellular matrix protein expression, and histologic analysis. IL-10–deficient mice developed significantly enhanced airway cellularity and remodeling when compared with C57BL/6 mice after chronic LPS inhalation. However they demonstrated less airway hyperreactivity associated with higher inducible nitric oxide synthase (iNOS), endothelial NOS (eNOS), and lung lavage fluid nitrite levels. In a bone marrow transplantation model, the IL-10 antiinflammatory effect was dependent on the hematopoietic but not on the parenchymal IL-10 expression. Induced epithelial human IL-10 expression protected from the LPS effects and led to decreased collagen production. IL-10 attenuates chronic LPS-induced airway inflammation and remodeling. Physiologically, the antiinflammatory effect of IL-10 is mediated by hematopoietic cells. Therapeutically, adenovirus-driven expression of human IL-10 in airway epithelia is sufficient for its protective effect on inflammation and remodeling. The role of IL-10 on airway hyperreactivity is complex: IL-10 deficiency protects against LPS-induced hyperreactivity, and is associated with higher eNOS, iNOS, and airway nitrate levels.
doi:10.1165/rcmb.2006-0055OC
PMCID: PMC2643294  PMID: 16809636
airway hyperreactivity; airway remodeling; endotoxin; IL-10
10.  Multistrain Genetic Comparisons Reveal CCR5 as a Receptor Involved in Airway Hyperresponsiveness 
Asthma is a ubiquitous disease with a broad range of clinical phenotypes. To better understand the complex genetic and environmental interactions underlying asthma, we compared the gene–gene interactions of four genetically distinct mouse strains that demonstrate biologically distinct responses to allergen. Using DNA microarrays and knock-out mouse studies, we showed that CCR5 plays a definitive role in the development of ovalbumin-induced allergic airway inflammatory disease. In addition, gene expression profiling data have revealed other potential novel targets for therapeutics-based research and has enhanced the understanding of the molecular mechanisms underlying the etiology of “asthma.”
doi:10.1165/rcmb.2005-0314OC
PMCID: PMC2644233  PMID: 16474097
airway hyperresponsiveness; asthma; CCR5; microarray; multistrain

Results 1-10 (10)