PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Persistence of LPS-Induced Lung Inflammation in Surfactant Protein-C–Deficient Mice 
Pulmonary surfactant protein-C (SP-C) gene–targeted mice (Sftpc−/−) develop progressive lung inflammation and remodeling. We hypothesized that SP-C deficiency reduces the ability to suppress repetitive inflammatory injury. Sftpc+/+ and Sftpc−/− mice given three doses of bacterial LPS developed airway and airspace inflammation, which was more intense in the Sftpc−/− mice at 3 and 5 days after the final dose. Compared with Sftpc+/+mice, inflammatory injury persisted in the lungs of Sftpc−/− mice 30 days after the final LPS challenge. Sftpc−/− mice showed LPS-induced airway goblet cell hyperplasia with increased detection of Sam pointed Ets domain and FoxA3 transcription factors. Sftpc−/− type II alveolar epithelial cells had increased cytokine expression after LPS exposure relative to Sftpc+/+ cells, indicating that type II cell dysfunction contributes to inflammatory sensitivity. Microarray analyses of isolated type II cells identified a pattern of enhanced expression of inflammatory genes consistent with an intrinsic low-level inflammation resulting from SP-C deficiency. SP-C–containing clinical surfactant extract (Survanta) or SP-C/phospholipid vesicles blocked LPS signaling through the LPS receptor (Toll-like receptor [TLR] 4/CD14/MD2) in human embryonic kidney 293T cells, indicating that SP-C blocks LPS-induced cytokine production by a TLR4-dependent mechanism. Phospholipid vesicles alone did not modify the TLR4 response. In vivo deficiency of SP-C leads to inflammation, increased cytokine production by type II cells, and persistent inflammation after repetitive LPS stimulation.
doi:10.1165/rcmb.2012-0374OC
PMCID: PMC3931093  PMID: 23795648
surfactant protein-C; LPS; lung inflammation; type II cells; Toll-like receptor 4
2.  Nitric Oxide Mediates Relative Airway Hyporesponsiveness to Lipopolysaccharide in Surfactant Protein A–Deficient Mice 
Surfactant protein A (SP-A) mediates innate immune cell responses to LPS, a cell wall component of gram-negative bacteria that is found ubiquitously in the environment and is associated with adverse health effects. Inhaled LPS induces lung inflammation and increases airway responsiveness (AR). However, the role of SP-A in mediating LPS-induced AR is not well-defined. Nitric oxide (NO) is described as a potent bronchodilator, and previous studies showed that SP-A modulates the LPS-induced production of NO. Hence, we tested the hypothesis that increased AR, observed in response to aerosolized LPS exposure, would be significantly reduced in an SP-A–deficient condition. Wild-type (WT) and SP-A null (SP-A−/−) mice were challenged with aerosolized LPS. Results indicate that despite similar inflammatory indices, LPS-treated SP-A−/− mice had attenuated AR after methacholine challenge, compared with WT mice. The attenuated AR could not be attributed to inherent differences in SP-D concentrations or airway smooth muscle contractile and relaxation properties, because these measures were similar between WT and SP-A−/− mice. LPS-treated SP-A−/− mice, however, had elevated nitrite concentrations, inducible nitric oxide synthase (iNOS) expression, and NOS activity in their lungs. Moreover, the administration of the iNOS-specific inhibitor 1400W completely abrogated the attenuated AR. Thus, when exposed to aerosolized LPS, SP-A−/− mice demonstrate a relative airway hyporesponsiveness that appears to be mediated at least partly via an iNOS-dependent mechanism. These findings may have clinical significance, because recent studies reported associations between surfactant protein polymorphisms and a variety of lung diseases.
doi:10.1165/rcmb.2009-0284OC
PMCID: PMC3049231  PMID: 20348208
surfactant protein A; lipopolysaccharide; airway responsiveness
3.  Rapamycin Prevents Transforming Growth Factor-α–Induced Pulmonary Fibrosis 
Transforming growth factor (TGF)-α is a ligand for the epidermal growth factor receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. Overexpression of TGF-α in transgenic mice causes progressive and severe pulmonary fibrosis; however, the intracellular signaling pathways downstream of EGFR mediating this response are unknown. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-α expression, we observed increased PCNA protein and phosphorylation of Akt and p70S6K in whole lung homogenates in association with induction of TGF-α. Induction in the lung of TGF-α caused progressive pulmonary fibrosis over a 7-week period. Daily administration of rapamycin prevented accumulation of total lung collagen, weight loss, and changes in pulmonary mechanics. Treatment of mice with rapamycin 4 weeks after the induction of TGF-α prevented additional weight loss, increases in total collagen, and changes in pulmonary mechanics. Rapamycin prevented further increases in established pulmonary fibrosis induced by EGFR activation. This study demonstrates that mammalian target of rapamycin (mTOR) is a major effector of EGFR-induced pulmonary fibrosis, providing support for further studies to determine the role of mTOR in the pathogenesis and treatment of pulmonary fibrosis.
doi:10.1165/rcmb.2008-0377OC
PMCID: PMC2778163  PMID: 19244201
epidermal growth factor receptor; PI3K; Akt; mTOR
4.  Early Growth Response-1 Suppresses Epidermal Growth Factor Receptor–Mediated Airway Hyperresponsiveness and Lung Remodeling in Mice 
Transforming growth factor (TGF)-α and its receptor, the epidermal growth factor receptor, are induced after lung injury and are associated with remodeling in chronic pulmonary diseases, such as pulmonary fibrosis and asthma. Expression of TGF-α in the lungs of adult mice causes fibrosis, pleural thickening, and pulmonary hypertension, in addition to increased expression of a transcription factor, early growth response-1 (Egr-1). Egr-1 was increased in airway smooth muscle (ASM) and the vascular adventitia in the lungs of mice conditionally expressing TGF-α in airway epithelium (Clara cell secretory protein–rtTA+/−/[tetO]7–TGF-α+/−). The goal of this study was to determine the role of Egr-1 in TGF-α–induced lung disease. To accomplish this, TGF-α–transgenic mice were crossed to Egr-1 knockout (Egr-1ko/ko) mice. The lack of Egr-1 markedly increased the severity of TGF-α–induced pulmonary disease, dramatically enhancing airway muscularization, increasing pulmonary fibrosis, and causing greater airway hyperresponsiveness to methacholine. Smooth muscle hyperplasia, not hypertrophy, caused the ASM thickening in the absence of Egr-1. No detectable increases in pulmonary inflammation were found. In addition to the airway remodeling disease, vascular remodeling and pulmonary hypertension were also more severe in Egr-1ko/ko mice. Thus, Egr-1 acts to suppress epidermal growth factor receptor–mediated airway and vascular muscularization, fibrosis, and airway hyperresponsiveness in the absence of inflammation. This provides a unique model to study the processes causing pulmonary fibrosis and ASM thickening without the complicating effects of inflammation.
doi:10.1165/rcmb.2008-0470OC
PMCID: PMC2746988  PMID: 19188657
transforming growth factor-α; pulmonary fibrosis; asthma; pulmonary hypertension; vascular remodeling
5.  Surfactant-Associated Protein B Is Critical to Survival in Nickel-Induced Injury in Mice 
The etiology of acute lung injury is complex and associated with numerous, chemically diverse precipitating factors. During acute lung injury in mice, one key event is epithelial cell injury that leads to reduced surfactant biosynthesis. We have previously reported that transgenic mice that express transforming growth factor α (TGFA) in the lung were protected during nickel-induced lung injury. Here, we find that the mechanism by which TGFA imparts protection includes maintenance of surfactant-associated protein B (SFTPB) transcript levels and epidermal growth factor receptor–dependent signaling in distal pulmonary epithelial cells. This protection is complex and not accompanied by a diminution in inflammatory mediator transcripts or additional stimulation of antioxidant transcripts. In mouse lung epithelial (MLE-15) cells, microarray analysis demonstrated that nickel increased transcripts of genes enriched in MTF1, E2F-1, and AP-2 transcription factor–binding sites and decreased transcripts of genes enriched in AP-1–binding sites. Nickel also increased Jun transcript and DNA-binding activity, but decreased SFTPB transcript. Expression of SFTPB under the control of a doxycycline-sensitive promoter increased survival during nickel-induced injury as compared with control mice. Together, these findings support the idea that maintenance of SFTPB expression is critical to survival during acute lung injury.
doi:10.1165/rcmb.2008-0317OC
PMCID: PMC2715910  PMID: 19131640
adult respiratory distress syndrome; innate immunity; chemokine; surfactant
6.  Acrolein-Activated Matrix Metalloproteinase 9 Contributes to Persistent Mucin Production 
Chronic obstructive pulmonary disease (COPD), a global public health problem, is characterized by progressive difficulty in breathing, with increased mucin production, especially in the small airways. Acrolein, a constituent of cigarette smoke and an endogenous mediator of oxidative stress, increases airway mucin 5, subtypes A and C (MUC5AC) production; however, the mechanism remains unclear. In this study, increased mMUC5AC transcripts and protein were associated with increased lung matrix metalloproteinase 9 (mMMP9) transcripts, protein, and activity in acrolein-exposed mice. Increased mMUC5AC transcripts and mucin protein were diminished in gene-targeted Mmp9 mice [Mmp9(-/-)] or in mice treated with an epidermal growth factor receptor (EGFR) inhibitor, erlotinib. Acrolein also decreased mTissue inhibitor of metalloproteinase protein 3 (an MMP9 inhibitor) transcript levels. In a cell-free system, acrolein increased pro-hMMP9 cleavage and activity in concentrations (100–300 nM) found in sputum from subjects with COPD. Acrolein increased hMMP9 transcripts in human airway cells, which was inhibited by an MMP inhibitor, EGFR-neutralizing antibody, or a mitogen-activated protein kinase (MAPK) 3/2 inhibitor. Together these findings indicate that acrolein can initiate cleavage of pro-hMMP9 and EGFR/MAPK signaling that leads to additional MMP9 formation. Augmentation of hMMP9 activity, in turn, could contribute to persistent excessive mucin production.
doi:10.1165/rcmb.2006-0339OC
PMCID: PMC2274947  PMID: 18006877
mucus; COPD; matrix metalloproteinase; cigarette smoke; oxidative stress
7.  Genomic Profile of Matrix and Vasculature Remodeling in TGF-α–Induced Pulmonary Fibrosis 
Expression of transforming growth factor α (TGF-α) in the respiratory epithelium of transgenic mice caused pulmonary fibrosis, cachexia, pulmonary hypertension, and altered lung function. To identify genes and molecular pathways mediating lung remodeling, mRNA microarray analysis was performed at multiple times after TGF-α expression and revealed changes consistent with a role for TGF-α in the regulation of extracellular matrix and vasculogenesis. Transcripts for extracellular matrix proteins were augmented along with transcripts for genes previously identified to have roles in pulmonary fibrosis, including tenascin C, osteopontin, and serine (or cysteine) peptidase inhibitor, clade F, member 1. Transcripts regulating vascular processes including endothelin receptor type B, endothelial-specific receptor tyrosine kinase, and caveolin, caveolae protein 1 were decreased. When TGF-α expression was no longer induced, lung remodeling partially reversed and lung function and pulmonary hypertension normalized. Transcripts increased during resolution included midkine, matrix metalloproteinase 2, and hemolytic complement. Hierarchical clustering revealed that genes regulated by TGF-α were similar to those altered in the lungs of patients with idiopathic pulmonary fibrosis. These studies support a role for epithelial cell–derived TGF-α in the regulation of processes that alter the airway and vascular architecture and function.
doi:10.1165/rcmb.2006-0455OC
PMCID: PMC1994231  PMID: 17496152
epidermal growth factor receptor; idiopathic pulmonary fibrosis; vasculogenesis; angiogenesis; interstitial lung disease

Results 1-7 (7)