Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)
Year of Publication
Document Types
1.  Intrapleural Adenoviral Delivery of Human Plasminogen Activator Inhibitor–1 Exacerbates Tetracycline-Induced Pleural Injury in Rabbits 
Elevated concentrations of plasminogen activator inhibitor–1 (PAI-1) are associated with pleural injury, but its effects on pleural organization remain unclear. A method of adenovirus-mediated delivery of genes of interest (expressed under a cytomegalovirus promoter) to rabbit pleura was developed and used with lacZ and human (h) PAI-1. Histology, β-galactosidase staining, Western blotting, enzymatic and immunohistochemical analyses of pleural fluids (PFs), lavages, and pleural mesothelial cells were used to evaluate the efficiency and effects of transduction. Transduction was selective and limited to the pleural mesothelial monolayer. The intrapleural expression of both genes was transient, with their peak expression at 4 to 5 days. On Day 5, hPAI-1 (40–80 and 200–400 nM of active and total hPAI-1 in lavages, respectively) caused no overt pleural injury, effusions, or fibrosis. The adenovirus-mediated delivery of hPAI-1 with subsequent tetracycline-induced pleural injury resulted in a significant exacerbation of the pleural fibrosis observed on Day 5 (P = 0.029 and P = 0.021 versus vehicle and adenoviral control samples, respectively). Intrapleural fibrinolytic therapy (IPFT) with plasminogen activators was effective in both animals overexpressing hPAI-1 and control animals with tetracycline injury alone. An increase in intrapleural active PAI-1 (from 10–15 nM in control animals to 20–40 nM in hPAI-1–overexpressing animals) resulted in the increased formation of PAI-1/plasminogen activator complexes in vivo. The decrease in intrapleural plasminogen-activating activity observed at 10 to 40 minutes after IPFT correlates linearly with the initial concentration of active PAI-1. Therefore, active PAI-1 in PFs affects the outcome of IPFT, and may be both a biomarker of pleural injury and a molecular target for its treatment.
PMCID: PMC3547083  PMID: 23002099
pleural injury; plasminogen activator inhibitor–1; intrapleural fibrinolytic therapy
2.  Tissue Factor Pathway Inhibitor Attenuates the Progression of Malignant Pleural Mesothelioma in Nude Mice 
Malignant pleural mesothelioma (MPM) is a rare cancer that is refractory to current treatments. It is characterized by a robust deposition of transitional fibrin that is in part promoted by tumor cells. MPM cells express tissue factor (TF) and the tissue factor pathway inhibitor (TFPI), but their contribution to the pathogenesis of MPM has been unclear. We found that REN MPM cells fail to express TFPI. Based on the tumor growth–promoting properties of TF, we hypothesized that the stable transfection of TFPI into REN MPM cells would decrease their aggressiveness. We tested our hypothesis using in vitro, in vivo, and ex vivo analyses. TFPI knock-in decreased the proliferation, invasion, and TF activity of REN cells in vitro. REN TFPI knock-in cells, empty vector, and naive control cells were next injected intrapleurally into nude mice. The expression of TFPI significantly decreased tissue invasion, inflammation, and the deposition of fibrin and collagen associated with tumor tissue, pleural effusions, and tumor burden. In ex vivo analyses, REN cells were cultured from harvested tumors. The overexpression of TFPI was maintained in cells propagated from TFPI knock-in tumors, and attenuated the activation of Factor X and the invasiveness of tumor cells. These analyses demonstrate that TFPI reduces the aggressiveness of MPM in vitro and in vivo, and that its effect involves the inhibition of TF procoagulant activity. These observations suggest that the interactions of TF and TFPI represent a novel therapeutic target in the treatment of MPM.
PMCID: PMC3297168  PMID: 21852688
malignant pleural mesothelioma; tissue factor pathway inhibitor; proliferation; invasion; tumorigenesis
3.  Lipoprotein Receptor–Related Protein 1 Regulates Collagen 1 Expression, Proteolysis, and Migration in Human Pleural Mesothelial Cells 
The low-density lipoprotein receptor–related protein 1 (LRP-1) binds and can internalize a diverse group of ligands, including members of the fibrinolytic pathway, urokinase plasminogen activator (uPA), and its receptor, uPAR. In this study, we characterized the role of LRP-1 in uPAR processing, collagen synthesis, proteolysis, and migration in pleural mesothelial cells (PMCs). When PMCs were treated with the proinflammatory cytokines TNF-α and IL-1β, LRP-1 significantly decreased at the mRNA and protein levels (70 and 90%, respectively; P < 0.05). Consequently, uPA-mediated uPAR internalization was reduced by 80% in the presence of TNF-α or IL-1β (P < 0.05). In parallel studies, LRP-1 neutralization with receptor-associated protein (RAP) significantly reduced uPA-dependent uPAR internalization and increased uPAR stability in PMCs. LRP-1–deficient cells demonstrated increased uPAR t1/2 versus LRP-1–expressing PMCs. uPA enzymatic activity was also increased in LRP-1–deficient and neutralized cells, and RAP potentiated uPA-dependent migration in PMCs. Collagen expression in PMCs was also induced by uPA, and the effect was potentiated in RAP-treated cells. These studies indicate that TNF-α and IL-1β regulate LRP-1 in PMCs and that LRP-1 thereby contributes to a range of pathophysiologically relevant responses of these cells.
PMCID: PMC3297170  PMID: 22298529
pleural mesothelial cells; uPAR; LRP-1; internalization; half-life
4.  Urokinase Plasminogen Activator Regulates Pulmonary Arterial Contractility and Vascular Permeability in Mice 
The concentration of urokinase plasminogen activator (uPA) is elevated in pathological settings such as acute lung injury, where pulmonary arterial contractility and permeability are disrupted. uPA limits the accretion of fibrin after injury. Here we investigated whether uPA also regulates pulmonary arterial contractility and permeability. Contractility was measured using isolated pulmonary arterial rings. Pulmonary blood flow was measured in vivo by Doppler and pulmonary vascular permeability, according to the extravasation of Evans blue. Our data show that uPA regulates the in vitro pulmonary arterial contractility induced by phenylephrine in a dose-dependent manner through two receptor-dependent pathways, and regulates vascular contractility and permeability in vivo. Physiological concentrations of uPA (≤1 nM) stimulate the contractility of pulmonary arterial rings induced by phenylephrine through the low-density lipoprotein receptor–related protein receptor. The procontractile effect of uPA is independent of its catalytic activity. At pathophysiological concentrations, uPA (20 nM) inhibits contractility and increases vascular permeability. The inhibition of vascular contractility and increase of vascular permeability is mediated through a two-step process that involves docking to N-methyl-d-aspartate receptor–1 (NMDA-R1) on pulmonary vascular smooth muscle cells, and requires catalytic activity. Peptides that specifically inhibit the docking of uPA to NMDA-R, or the uPA variant with a mutated receptor docking site, abolished both the effects of uPA on vascular contractility and permeability, without affecting its catalytic activity. These data show that uPA, at concentrations found under pathological conditions, reduces pulmonary arterial contractility and increases permeability though the activation of NMDA-R1. The selective inhibition of NMDAR-1 activation by uPA can be accomplished without a loss of fibrinolytic activity.
PMCID: PMC3262683  PMID: 21617202
urokinase; NMDA-R; lung; permeability
5.  Regulation of Airway Contractility by Plasminogen Activators through N-Methyl-D-Aspartate Receptor–1 
Reactive airway disease is mediated by smooth muscle contraction initiated through several agonist-dependent pathways. Activation of type 1 N-methyl-D-aspartate receptors (NMDA-R1s) by plasminogen activators (PAs) has been linked to control of vascular tone, but their effect on airway smooth muscle contractility has not previously been studied to our knowledge. We observed that NMDA-R1s are expressed by human airway smooth muscle cells and constitutively inhibit the contraction of isolated rat tracheal rings in response to acetylcholine (Ach). Both tissue-type PA (tPA) and urokinase-type PA (uPA) bind to NMDA-R1 and reverse this effect, thereby enhancing Ach-induced tracheal contractility. Tracheal contractility initiated by Ach is reduced in rings isolated from tPA−/− and uPA−/− mice compared with their wild-type counterparts. The procontractile effect of uPA or tPA was mimicked and augmented by the nitric oxide synthase inhibitor, l-NAME. uPA and tPA further enhanced the contractility of rings denuded of epithelium, an effect that was inhibited by the NMDA-R antagonist, MK-801. Binding of PAs to NMDA-R1 and the subsequent activation of the receptor were inhibited by PA inhibitor type 1, by a PA inhibitor type 1–derived hexapeptide that recognizes the tPA and uPA docking domains, as well as by specific mutations within the docking site of tPA. These studies identify involvement of PAs and NMDA-R1 in airway contractility, and define new loci that could lead to the development of novel interventions for reactive airway disease.
PMCID: PMC2993090  PMID: 20097831
tissue plasminogen activator; urokinase NMDA receptor; lungs
6.  Post-Transcriptional Regulation of Plasminogen Activator Inhibitor Type–1 Expression in Human Pleural Mesothelial Cells 
The plasminogen activator inhibitor type–1 (PAI-1) effectively blocks the activities of free and receptor-bound urokinase-type plasminogen activator. Incubation of cultured human pleural mesothelial (Met5A) cells with TGF-β increased PAI-1 protein. TGF-β, phorbol myristate acetate, and the translation inhibitor cycloheximide induced PAI-1 mRNA and slowed its degradation, suggesting that PAI-1 mRNA could be regulated by interaction of a PAI-1 binding protein (PAI-1 mRNABp) with PAI-1 mRNA. We found that an approximately 60 kD cytoplasmic PAI-1 mRNABp is detectable in cytoplasmic extracts of MeT5A human pleural mesothelial and malignant mesothelioma cells. The PAI-1 mRNABp specifically binds to a 33-nt sequence in the 3′ untranslated region of PAI-1 mRNA. Insertion of this 33-nt sequence destabilizes otherwise stable β-globin mRNA, indicating that the binding sequence accelerates decay of endogenous PAI-1 mRNA. Competitive inhibition by overexpression of the 33-nt binding sequence in MeT5A cells reduced PAI-1 mRNA decay and increased PAI-1 protein and mRNA expression, indicating that the PAI-1 mRNABp destabilizes PAI-1 mRNA by its interaction with the endogenous 33-nt binding sequence. Incubation of Met5A cells with TGF-β attenuated the interaction of the PAI-1 mRNABp with the 33-nt sequence. By conventional and affinity purification, we isolated the PAI-1 mRNABp and confirmed its identity as 6-phospho-d-gluconate-NADP oxidoreductase, which specifically interacts with the full-length and the 33-nt sequence of the PAI-1 mRNA 3′ untranslated region. This newly recognized pathway could influence expression of PAI-1 by mesothelial or mesothelioma cells at the level of mRNA stability in the context of pleural inflammation or malignancy.
PMCID: PMC2933551  PMID: 19855086
PAI-1; mesothelial cells; post-transcriptional regulation
7.  The Urokinase Receptor Supports Tumorigenesis of Human Malignant Pleural Mesothelioma Cells 
Malignant pleural mesothelioma (MPM) is a lethal neoplasm for which current therapy is unsatisfactory. The urokinase plasminogen activator receptor (uPAR) is associated with increased virulence of many solid neoplasms, but its role in the pathogenesis of MPM is currently unclear. We found that REN human pleural MPM cells expressed 4- to 10-fold more uPAR than MS-1 or M9K MPM cells or MeT5A human pleural mesothelial cells. In a new orthotopic murine model of MPM, we found that the kinetics of REN cell tumorigenesis is accelerated versus MS-1 or M9K cells, and that REN instillates generated larger tumors expressing increased uPAR, were more invasive, and caused earlier mortality. While REN, MS-1, and M9K tumors were all associated with prominent extravascular fibrin deposition, excised REN tumor homogenates were characterized by markedly increased uPAR at both the mRNA and protein levels. REN cells exhibited increased thymidine incorporation, which was attenuated in uPAR-silenced cells (P < 0.01). REN cells traversed three-dimensional fibrin gels while MS-1, M9K, and MeT5A cells did not. uPAR siRNA or uPAR blocking antibodies decreased REN cell migration and invasion, while uPA and fetal bovine serum augmented the effects. Transfection of relatively low uPAR expressing MS-1 cells with uPAR cDNA increased proliferation and migration in vitro and tumor formation in vivo. These observations link overexpression of uPAR to the pathogenesis of MPM, demonstrate that this receptor contributes to accelerated tumor growth in part through interactions with uPA, and suggest that uPAR may be a promising target for therapeutic intervention.
PMCID: PMC2891497  PMID: 19635932
malignant pleural mesothelioma; urokinase receptor; proliferation; invasion; tumorigenesis
8.  Expression and Regulation of Epithelial Na+ Channels by Nucleotides in Pleural Mesothelial Cells 
Pleural effusions are commonly clinical disorders, resulting from the imbalance between pleural fluid turnover and reabsorption. The mechanisms underlying pleural fluid clearance across the mesothelium remain to be elucidated. We hypothesized that epithelial Na+ channel (ENaC) is expressed and forms the molecular basis of the amiloride-sensitive resistance in human mesothelial cells. Our RT-PCR results showed that three ENaC subunits, namely, α, β, γ, and two δ ENaC subunits, are expressed in human primary pleural mesothelial cells, a human mesothelioma cell line (M9K), and mouse pleural tissue. In addition, Western blotting and immunofluorescence microscopy studies revealed that α, β, γ, and δ ENaC subunits are expressed in primary human mesothelial cells and M9K cells at the protein level. An amiloride-inhibitable short-circuit current was detected in M9K monolayers and mouse pleural tissues when mounted in Ussing chambers. Whole-cell patch clamp recordings showed an ENaC-like channel with an amiloride concentration producing 50% inhibition of 12 μM in M9K cells. This cation channel has a high affinity for extracellular Na+ ions (Km: 53 mM). The ion selectivity of this channel to cations follows the same order as ENaC: Li+ > Na+ > K+. The unitary Li+ conductance was 15 pS in on-cell patches. Four ENaC subunits form a functional Na+ channel when coinjected into Xenopus oocytes. Furthermore, we found that both forskolin and cGMP increased the short-circuit currents in mouse pleural tissues. Taken together, our data demonstrate that the ENaC channels are biochemically and functionally expressed in human pleural mesothelial cells, and can be up-regulated by cyclic AMP and cyclic GMP.
PMCID: PMC2677435  PMID: 18927349
M9K mesothelioma cells; Ussing chamber; protein kinase A; protein kinase G; human primary mesothelial cells

Results 1-8 (8)