PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Increased Hyperoxia-Induced Lung Injury in Nitric Oxide Synthase 2 Null Mice Is Mediated via Angiopoietin 2 
Supplemental oxygen is frequently prescribed. However, prolonged exposure to high concentrations of oxygen causes hyperoxic acute lung injury (HALI), which manifests as acute respiratory distress syndrome in adults and leads to bronchopulmonary dysplasia in newborns (NBs). Nitric oxide (NO), NO synthases (NOSs), and angiopoietin (Ang) 2 have been implicated in the pathogenesis of HALI. However, the mechanisms of the contributions of NOS/NO and the relationship(s) between NOS/NO and Ang2 have not been addressed. In addition, the relevance of these moieties in adults and NBs has not been evaluated. To address these issues, we compared the responses in hyperoxia of wild-type (NOS [+/+]) and NOS null (−/−) young adult and NB mice. When compared with NOS2+/+ adult controls, NOS2−/− animals manifest exaggerated alveolar–capillary protein leak and premature death. These responses were associated with enhanced levels of structural cell death, enhanced expression of proapoptotic regulatory proteins, and Ang2. Importantly, silencing RNA knockdown of Ang2 decreased the levels of cell death and the expression of proapoptotic mediators. These effects were at least partially NOS2 specific, and were development dependent, because survival was similar in adult NOS3+/+ and NOS3−/− mice and NB NOS2+/+ and NOS2−/− mice, respectively. These studies demonstrate that NOS2 plays an important protective role in HALI in adult animals. They also demonstrate that this response is mediated, at least in part, by the ability of NOS2 to inhibit hyperoxia-induced Ang2 production and thereby decrease Ang2-induced tissue injury.
doi:10.1165/rcmb.2011-0074OC
PMCID: PMC3359903  PMID: 22227562
cytokines; hyperoxia; lung
2.  Role of Breast Regression Protein–39 in the Pathogenesis of Cigarette Smoke–Induced Inflammation and Emphysema 
The exaggerated expression of chitinase-like protein YKL-40, the human homologue of breast regression protein–39 (BRP-39), was reported in a number of diseases, including chronic obstructive pulmonary disease (COPD). However, the in vivo roles of YKL-40 in normal physiology or in the pathogenesis of specific diseases such as COPD remain poorly understood. We hypothesized that BRP-39/YKL-40 plays an important role in the pathogenesis of cigarette smoke (CS)–induced emphysema. To test this hypothesis, 10-week-old wild-type and BRP-39 null mutant mice (BRP-39−/−) were exposed to room air (RA) and CS for up to 10 months. The expression of BRP-39 was significantly induced in macrophages, airway epithelial cells, and alveolar Type II cells in the lungs of CS-exposed mice compared with RA-exposed mice, at least in part via an IL-18 signaling–dependent pathway. The null mutation of BRP-39 significantly reduced CS-induced bronchoalveolar lavage and tissue inflammation. However, CS-induced epithelial cell apoptosis and alveolar destruction were further enhanced in the absence of BRP-39. Consistent with these findings in mice, the tissue expression of YKL-40 was significantly increased in the lungs of current smokers compared with the lungs of ex-smokers or nonsmokers. In addition, serum concentrations of YKL-40 were significantly higher in smokers with COPD than in nonsmokers or smokers without COPD. These studies demonstrate a novel regulatory role of BRP-39/YKL-40 in CS-induced inflammation and emphysematous destruction. These studies also underscore that maintaining physiologic concentrations of YKL-40 in the lung is therapeutically important in preventing excessive inflammatory responses or emphysematous alveolar destruction.
doi:10.1165/rcmb.2010-0081OC
PMCID: PMC3135840  PMID: 20656949
YKL-40/BRP-39; COPD; emphysema; cigarette smoke
3.  A Role for Matrix Metalloproteinase 9 in IFNγ-Mediated Injury in Developing Lungs 
We noted a marked increase in IFNγ mRNA in newborn (NB) murine lungs after exposure to hyperoxia. We sought to evaluate the role of IFNγ in lung injury in newborns. Using a unique triple-transgenic (TTG), IFNγ-overexpressing, lung-targeted, externally regulatable NB murine model, we describe a lung phenotype of impaired alveolarization, resembling human bronchopulmonary dysplasia (BPD). IFNγ-mediated abnormal lung architecture was associated with increased cell death and the upregulation of cell death pathway mediators caspases 3, 6, 8, and 9, and angiopoietin 2. Moreover, an increase was evident in cathepsins B, H, K, L, and S, and in matrix metalloproteinases (MMPs) 2, 9, 12, and 14. The IFNγ-mediated abnormal lung architecture was found to be MMP9-dependent, as indicated by the rescue of the IFNγ-induced pulmonary phenotype and survival during hyperoxia with a concomitant partial deficiency of MMP9. This result was concomitant with a decrease in caspases 3, 6, 8, and 9 and angiopoietin 2, but an increase in the expression of angiopoietin 1. In addition, NB IFNγ TTG mice exhibited significantly decreased survival during hyperoxia, compared with littermate controls. Furthermore, as evidence of clinical relevance, we show increased concentrations of the downstream targets of IFNγ chemokine (C-X-C motif) ligands (CXCL10 and CXCL11) in baboon and human lungs with BPD. IFNγ and its downstream targets may contribute significantly to the final common pathway of hyperoxia-induced injury in the developing lung and in human BPD.
doi:10.1165/rcmb.2010-0058OC
PMCID: PMC3095982  PMID: 21216975
newborn; hyperoxia; BPD; IFNγ; MMP9
4.  A Critical Role of SHP-1 in Regulation of Type 2 Inflammation in the Lung 
Asthma is a chronic inflammatory disorder of the airways. Type 2 T helper (Th) cell–dominated inflammation in the lung is a hallmark of asthma. Src homology 2 domain–containing protein tyrosine phosphatase (SHP)-1 is a negative regulator in the signaling pathways of many growth factor and cytokine receptors. However, a direct role of SHP-1 in the IL-4/IL-13 signaling pathway has not been established. In this study, we sought to define the function of SHP-1 in the lung by characterizing the pulmonary inflammation of viable motheaten (mev) mice, and to investigate the molecular mechanisms involved. Pulmonary histology, physiology, and cytokine expression of mev mice were analyzed to define the nature of the inflammation, and the gene-deletion approach was used to identify critical molecules involved. In mev mice, we observed spontaneous Th2-like inflammatory responses in the lung, including eosinophilia, mucus metaplasia, airway epithelial hypertrophy, pulmonary fibrosis, and increased airway resistance and airway hyperresponsiveness. The pulmonary phenotype was accompanied by up-regulation of Th2 cytokines and chemokines. Selective deletion of IL-13 or signal transducer and activator of transcription 6, key genes in the Th2 signaling pathway, significantly reduced, but did not completely eliminate, the inflammation in the lung. These findings suggest that SHP-1 plays a critical role in regulating the IL-4/IL-13 signaling pathway and in maintaining lung homeostasis.
doi:10.1165/rcmb.2008-0225OC
PMCID: PMC2677436  PMID: 18952567
Src homology 2 domain–containing protein tyrosine phosphatase-1; protein tyrosine phosphatase; motheaten mouse; type 2 T helper cell inflammation; lung
5.  Endogenous IL-11 Signaling Is Essential in Th2- and IL-13–Induced Inflammation and Mucus Production 
IL-11 and IL-11 receptor (R)α are induced by Th2 cytokines. However, the role(s) of endogenous IL-11 in antigen-induced Th2 inflammation has not been fully defined. We hypothesized that IL-11, signaling via IL-11Rα, plays an important role in aeroallergen-induced Th2 inflammation and mucus metaplasia. To test this hypothesis, we compared the responses induced by the aeroallergen ovalbumin (OVA) in wild-type (WT) and IL-11Rα–null mutant mice. We also generated and defined the effects of an antagonistic IL-11 mutein on pulmonary Th2 responses. Increased levels of IgE, eosinophilic tissue and bronchoalveolar lavage (BAL) inflammation, IL-13 production, and increased mucus production and secretion were noted in OVA-sensitized and -challenged WT mice. These responses were at least partially IL-11 dependent because each was decreased in mice with null mutations of IL-11Rα. Importantly, the administration of the IL-11 mutein to OVA-sensitized mice before aerosol antigen challenge also caused a significant decrease in OVA-induced inflammation, mucus responses, and IL-13 production. Intraperitoneal administration of the mutein to lung-specific IL-13–overexpressing transgenic mice also reduced BAL inflammation and airway mucus elaboration. These studies demonstrate that endogenous IL-11R signaling plays an important role in antigen-induced sensitization, eosinophilic inflammation, and airway mucus production. They also demonstrate that Th2 and IL-13 responses can be regulated by interventions that manipulate IL-11 signaling in the murine lung.
doi:10.1165/rcmb.2008-0053OC
PMCID: PMC2586049  PMID: 18617680
IL-11; mutein; airway inflammation; mucus; IL-13
6.  Developmental Regulation of NO-Mediated VEGF-Induced Effects in the Lung 
Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit.
doi:10.1165/rcmb.2007-0024OC
PMCID: PMC2551703  PMID: 18441284
vascular endothelial growth factor; nitric oxide; lung; surfactant
7.  P21 Regulates TGF-β1–Induced Pulmonary Responses via a TNF-α–Signaling Pathway 
Transforming growth factor (TGF)-β1 is an essential regulatory cytokine that has been implicated in the pathogenesis of diverse facets of the injury and repair responses in the lung. The types of responses that it elicits can be appreciated in studies from our laboratory that demonstrated that the transgenic (Tg) overexpression of TGF-β1 in the murine lung causes epithelial apoptosis followed by fibrosis, inflammation, and parenchymal destruction. Because a cyclin-dependent kinase inhibitor, p21, is a key regulator of apoptosis, we hypothesized that p21 plays an important role in the pathogenesis of TGF-β1–induced tissue responses. To test this hypothesis we evaluated the effect of TGF-β1 on the expression of p21 in the murine lung. We also characterized the effects of transgenic TGF-β1 in mice with wild-type and null mutant p21 loci. These studies demonstrate that TGF-β1 is a potent stimulator of p21 expression in the epithelial cells and macrophages in the murine lung. They also demonstrate that TGF-β1–induced lung inflammation, fibrosis, myofibroblast accumulation, and alveolar destruction are augmented in the absence of p21, and that these alterations are associated with exaggerated levels of apoptosis and caspase-3 activation. Finally, our studies further demonstrated that TGF-β1 induces p21 via a TNF-α–signaling pathway and that p21 is a negative modulator of TGF-β1–induced TNF-α expression. Collectively, our studies demonstrate that p21 regulates TGF-β1–induced apoptosis, inflammation, fibrosis, and alveolar remodeling by interacting with TNF-α–signaling pathways.
doi:10.1165/rcmb.2007-0276OC
PMCID: PMC2258454  PMID: 17932374
TGF-β; p21; apoptosis; fibrosis; emphysema

Results 1-7 (7)