PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Human Epidermal Growth Factor Receptor Signaling in Acute Lung Injury 
Acute lung injury (ALI) is a syndrome marked by increased permeability across the pulmonary epithelium resulting in pulmonary edema. Recent evidence suggests that members of the human epidermal growth factor receptor (HER) family are activated in alveolar epithelial cells during ALI and regulate alveolar epithelial barrier function. These tyrosine kinase receptors, which also participate in the pathophysiology of pulmonary epithelial malignancies, regulate cell growth, differentiation, and migration as well as cell–cell adhesion, all processes that influence epithelial injury and repair. In this review we outline mechanisms of epithelial injury and repair in ALI, activation patterns of this receptor family in pulmonary epithelial cells as a consequence injury, how receptor activation alters alveolar permeability, and the possible intracellular signaling pathways involved. Finally, we propose a theoretical model for how HER-mediated modulation of alveolar permeability might affect lung injury and repair. Understanding how these receptors signal has direct therapeutic implications in lung injury and other diseases characterized by altered epithelial barrier function.
doi:10.1165/rcmb.2012-0100TR
PMCID: PMC3488630  PMID: 22652197
acute lung injury; human epidermal growth factor receptor; inflammation; alveolar epithelial cell
2.  Leukocyte Elastase Induces Lung Epithelial Apoptosis via a PAR-1–, NF-κB–, and p53-Dependent Pathway 
Leukocyte elastase induces apoptosis of lung epithelial cells via alterations in mitochondrial permeability, but the signaling pathways regulating this response remain uncertain. Here we investigated the involvement of proteinase-activated receptor-1 (PAR-1), the transcription factor NF-κB, and the protooncogene p53 in this pathway. Elastase-induced apoptosis of lung epithelial cells correlated temporally with activation of NF-κB, phosphorylation, and nuclear translocation of p53, increased p53 up-regulated modulator of apoptosis (PUMA) expression, and mitochondrial translocation of Bax resulting in enhanced permeability. Elastase-induced apoptosis was also prevented by pharmacologic inhibitors of NF-κB and p53 and by short interfering RNA knockdown of PAR-1, p53, or PUMA. These inhibitors prevented elastase-induced PUMA expression, mitochondrial translocation of Bax, increased mitochondrial permeability, and attenuated apoptosis. NF-κB inhibitors also reduced p53 phosphorylation. We conclude that elastase-induced apoptosis of lung epithelial cells is mediated by a PAR-1–triggered pathway involving activation of NF-κB and p53, and a PUMA- and Bax-dependent increase in mitochondrial permeability leading to activation of distal caspases. Further, p53 contributes to elastase-induced apoptosis by both transcriptional and post-transcriptional mechanisms.
doi:10.1165/rcmb.2008-0157OC
PMCID: PMC2784410  PMID: 19307610
inflammation; lung injury; neutrophils; proteinase; mitochondria
3.  Transepithelial Migration of Neutrophils 
The primary function of neutrophils in host defense is to contain and eradicate invading microbial pathogens. This is achieved through a series of swift and highly coordinated responses culminating in ingestion (phagocytosis) and killing of invading microbes. While these tasks are usually performed without injury to host tissues, in pathologic circumstances such as sepsis, potent antimicrobial compounds can be released extracellularly, inducing a spectrum of responses in host cells ranging from activation to injury and death. In the lung, such inflammatory damage is believed to contribute to the pathogenesis of diverse lung diseases, including acute lung injury and the acute respiratory distress syndrome, chronic obstructive lung disease, and cystic fibrosis. In these disorders, epithelial cells are targets of leukocyte-derived antimicrobial products, including proteinases and oxidants. Herein, we review the mechanisms involved in the physiologic process of neutrophil transepithelial migration, including the role of specific adhesion molecules on the leukocyte and epithelial cells. We examine the responses of the epithelial cells to the itinerant leukocytes and their cytotoxic products and the consequences of this for lung injury and repair. This paradigm has important clinical implications because of the potential for selective blockade of these pathways to prevent or attenuate lung injury.
doi:10.1165/rcmb.2008-0348TR
PMCID: PMC2677434  PMID: 18978300
inflammation; acute lung injury; tight junctions; adherens junctions; proteolytic enzymes
4.  Molecular Pathogenesis of Lymphangioleiomyomatosis 
Lymphangioleiomyomatosis (LAM) is a rare progressive cystic lung disease affecting young women. The pivotal observation that LAM occurs both spontaneously and as part of the tuberous sclerosis complex (TSC) led to the hypothesis that these disorders share common genetic and pathogenetic mechanisms. In this review we describe the evolution of our understanding of the molecular and cellular basis of LAM and TSC, beginning with the discovery of the TSC1 and TSC2 genes and the demonstration of their involvement in sporadic (non-TSC) LAM. This was followed by rapid delineation of the signaling pathways in Drosophila melanogaster with confirmation in mice and humans. This knowledge served as the foundation for novel therapeutic approaches that are currently being used in human clinical trials.
doi:10.1165/rcmb.2006-0372TR
PMCID: PMC2176113  PMID: 17099139
tuberous sclerosis; TSC1; TSC2; mTOR; signal transduction; estrogen
5.  Abnormalities in the Pulmonary Innate Immune System in Cystic Fibrosis 
Pulmonary infection is the dominant clinical feature of cystic fibrosis (CF), but the basis for this susceptibility remains incompletely understood. One hypothesis is that CF airway surface liquid (ASL) is abnormal and interferes with neutrophil function. To study this possibility, we developed an in vitro system in which we collected ASL from primary cultures of normal and CF airway epithelial cells. Microbial killing was less efficient when bacteria were incubated with neutrophils in the presence of ASL from CF epithelia compared with normal ASL. Antimicrobial functions of human neutrophils were assessed in ASL from CF and normal epithelia using a combination of quantitative bacterial culture, flow cytometry, and microfluorescence imaging. The results of these assays of neutrophil function were indistinguishable in CF and normal ASL. In contrast, the direct bactericidal activity of ASL to Escherichia coli and to clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa was substantially less in CF than in normal ASL, even when highly diluted in media of identical ionic strength. Together, these observations indicate that the antimicrobial properties of ASL in CF are compromised in a manner independent of ionic strength of the ASL, and that this effect is not mediated through a direct effect of the ASL on phagocyte function.
doi:10.1165/rcmb.2005-0146OC
PMCID: PMC2644201  PMID: 16293782
airway surface liquid; cystic fibrosis; inflammation; ionic strength; neutrophil
6.  Proteinase-Activated Receptor-1 Mediates Elastase-Induced Apoptosis of Human Lung Epithelial Cells 
Apoptosis of distal lung epithelial cells plays a pivotal role in the pathogenesis of acute lung injury. In this context, proteinases, either circulating or leukocyte-derived, may contribute to epithelial apoptosis and lung injury. We hypothesized that apoptosis of lung epithelial cells induced by leukocyte elastase is mediated via the proteinase activated receptor (PAR)-1. Leukocyte elastase, thrombin, and PAR-1–activating peptide, but not the control peptide, induced apoptosis in human airway and alveolar epithelial cells as assessed by increases in cytoplasmic histone-associated DNA fragments and TUNEL staining. These effects were largely prevented by a specific PAR-1 antagonist and by short interfering RNA directed against PAR-1. To ascertain the mechanism of epithelial apoptosis, we determined that PAR-1AP, thrombin, and leukocyte elastase dissipated mitochondrial membrane potential, induced translocation of cytochrome c to the cytosol, enhanced cleavage of caspase-9 and caspase-3, and led to JNK activation and Akt inhibition. In concert, these observations provide strong evidence that leukocyte elastase mediates apoptosis of human lung epithelial cells through PAR-1–dependent modulation of the intrinsic apoptotic pathway via alterations in mitochondrial permeability and by modulation of JNK and Akt.
doi:10.1165/rcmb.2005-0109OC
PMCID: PMC2715314  PMID: 15891109
acute lung injury; proteinases; inflammation; signal transduction

Results 1-6 (6)