PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Assessment of an elastin binding molecule for PET imaging of atherosclerotic plaques 
Elastin is considered as a key player in human vascular diseases and it might contribute to the development of atherosclerosis. The elastin binding radiotracer, [18F]AlF-NOTA-EBM ([18F]2), was evaluated in a wild type mouse to determine its in vivo distribution and on human carotid atherosclerotic plaque tissues to assess its utility as a PET imaging agent for visualizing human atherosclerotic plaque lesions. The free ligand NOTA-EBM, which served as the precursor, was obtained in 25% chemical yield. The radiosynthesis of [18F]2 was accomplished by coordination of Al18F to NOTA-EBM in 8-13% decay corrected radiochemical yield (n = 7) and specific radioactivity of 59 ± 12 GBq/μmol. A dynamic in vivo PET scan in a healthy wild type mouse (C57BL/6) showed high accumulation of radioactivity in heart and lungs, organs reported to have high elastin content. Excretion of [18F]2 proceeded via the renal pathway and through the hepatobiliary system as indicated by a high uptake of radioactivity in the liver, intestines and gall bladder. In vitro autoradiography on human atherosclerotic plaque sections showed a heterogeneous distribution of [18F]2 with an elevated accumulation in stable and vulnerable atherosclerotic plaques compared to control samples of normal arteries. However, there was no statistical significance between the different plaque phenotypes and control samples. Competition experiments with 10.000-fold excess of free ligand NOTA-EBM resulted in a marked decrease of radioactivity accumulation, consistent with a target-specific ligand.
PMCID: PMC3715777  PMID: 23901358
Elastin; atherosclerotic plaques; PET imaging; autoradiography; Al18F
2.  Synthesis and preclinical evaluation of a new C-6 alkylated pyrimidine derivative as a PET imaging agent for HSV1-tk gene expression 
[18F]FHOMP (6-((1-[18F]-fluoro-3-hydroxypropan-2-yloxy)methyl)-5-methylpyrimidine-2,4(1H,3H)-dione), a C-6 substituted pyrimidine derivative, has been synthesized and evaluated as a potential PET agent for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene expression. [18F]FHOMP was prepared by the reaction of the tosylated precursor with tetrabutylammonium [18F]-fluoride followed by acidic cleavage of the protecting groups. In vitro cell accumulation of [18F]FHOMP and [18F]FHBG (reference) was studied with HSV1-tk transfected HEK293 (HEK293TK+) cells. Small animal PET and biodistribution studies were performed with HEK293TK+ xenograft-bearing nude mice. The role of equilibrative nucleoside transporter 1 (ENT1) in the transport and uptake of [18F] FHOMP was also examined in nude mice after treatment with ENT1 inhibitor nitrobenzylmercaptopurine ribonucleoside phosphate (NBMPR-P). [18F]FHOMP was obtained in a radiochemical yield of ~25% (decay corrected) and the radiochemical purity was greater than 95%. The uptake of [18F]FHOMP in HSV1-TK containing HEK293TK+ cells was 52 times (at 30 min) and 244 times (at 180 min) higher than in control HEK293 cells. The uptake ratios between HEK293TK+ and HEK293 control cells for [18F]FHBG were significantly lower i.e. 5 (at 30 min) and 81 (240 min). In vivo, [18F]FHOMP accumulated to a similar extend in HEK293TK+ xenografts as [18F]FHBG but with a higher general background. Blocking of ENT1 reduced [18F]FHOMP uptake into brain from a standardized uptake value (SUV) of 0.10±0.01 to 0.06±0.02, but did not reduce the general background signal in PET. Although [18F]FHOMP does not outperform [18F]FHBG in its in vivo performance, this novel C-6 pyrimidine derivative may be a useful probe for monitoring HSV1-tk gene expression in vivo.
PMCID: PMC3545364  PMID: 23342302
HSV1-TK; reporter gene; gene expression monitoring; PET; [18F]FHOMP; [18F]FHBG
3.  Synthesis, radiolabelling and in vitro and in vivo evaluation of a novel fluorinated ABP688 derivative for the PET imaging of metabotropic glutamate receptor subtype 5 
(E)-3-(Pyridin-2-ylethynyl)cyclohex-2-enone O-(2-(3-18F-fluoropropoxy)ethyl) oxime ([18F]-PSS223) was evaluated in vitro and in vivo to establish its potential as a PET tracer for imaging metabotropic glutamate receptor subtype 5 (mGluR5). [18F]-PSS223 was obtained in 20% decay corrected radiochemical yield whereas the non-radioactive PSS223 was accomplished in 70% chemical yield in a SN2 reaction of common intermediate mesylate 8 with potassium fluoride. The in vitro binding affinity of [18F]-PSS223 was measured directly in a Scatchard assay to give Kd = 3.34 ± 2.05 nM. [18F]-PSS223 was stable in PBS and rat plasma but was significantly metabolized by rat liver microsomal enzymes, but to a lesser extent by human liver microsomes. Within 60 min, 90% and 20% of [18F]-PSS223 was metabolized by rat and human microsome enzymes, respectively. In vitro autoradiography on horizontal rat brain slices showed heterogeneous distribution of [18F]-PSS223 with the highest accumulation in brain regions where mGluR5 is highly expressed (hippocampus, striatum and cortex). Autoradiography in vitro under blockade conditions with ABP688 confirmed the high specificity of [18F]-PSS223 for mGluR5. Under the same blocking conditions but using the mGluR1 antagonist, JNJ16259685, no blockade was observed demonstrating the selectivity of [18F]-PSS223 for mGluR5 over mGluR1. Despite favourable in vitro properties of [18F]-PSS223, a clear-cut visualization of mGluR5-rich brain regions in vivo in rats was not possible mainly due to a fast clearance from the brain and low metabolic stability of [18F]-PSS223.
PMCID: PMC3478118  PMID: 23133799
mGluR5; PET imaging; [18F]-PSS223; [11C]-ABP688; [18F]-FDEGPECO; autoradiography; microsome enzymes

Results 1-3 (3)