PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Mineralocorticoid Receptor-Dependent Proximal Tubule Injury Is Mediated by a Redox-Sensitive mTOR/S6K1 Pathway 
American Journal of Nephrology  2011;35(1):90-100.
Background/Aims
The mammalian target of rapamycin (mTOR) is a serine kinase that regulates phosphorylation (p) of its target ribosomal S6 kinase (S6K1), whose activation can lead to glomerular and proximal tubular cell (PTC) injury and associated proteinuria. Increased mTOR/S6K1 signaling regulates signaling pathways that target fibrosis through adherens junctions. Recent data indicate aldosterone signaling through the mineralocorticoid receptor (MR) can activate the mTOR pathway. Further, antagonism of the MR has beneficial effects on proteinuria that occur independent of hemodynamics.
Methods
Accordingly, hypertensive transgenic TG(mRen2)27 (Ren2) rats, with elevated serum aldosterone and proteinuria, and age-matched Sprague-Dawley rats were treated with either a low dose (1 mg/kg/day) or a conventional dose (30 mg/kg/day) of spironolactone (MR antagonist) or placebo for 3 weeks.
Results
Ren2 rats displayed increases in urine levels of the PTC brush border lysosomal enzyme N-acetyl-β-aminoglycosidase (β-NAG) in conjunction with reductions in PTC megalin, the apical membrane adherens protein T-cadherin and basolateral α-(E)-catenin, and fibrosis. In concert with these abnormalities, Ren2 renal cortical tissue also displayed increased Ser2448 (p)/activation of mTOR and Thr389 (p)-S6K1 and increased 3-nitrotyrosine (3-NT) content, a marker for peroxynitrite. Low-dose spironolactone had no effect on blood pressure but decreased proteinuria and β-NAG comparable to a conventional dose of this MR antagonist. Both doses of spironolactone attenuated ultrastructural maladaptive alterations and led to comparable reductions in (p)-mTOR/(p)-S6K1, 3-NT, fibrosis, and increased expression of α-(E)-catenin, T- and N-cadherin.
Conclusions
Thereby, MR antagonism improves proximal tubule integrity by targeting mTOR/S6K1 signaling and redox status independent of changes in blood pressure.
doi:10.1159/000335079
PMCID: PMC3316484  PMID: 22205374
Cadherin; Megalin; β-NAG; Proteinuria
2.  Angiotensin II Activation of mTOR Results in Tubulointerstitial Fibrosis through Loss of N-Cadherin 
American Journal of Nephrology  2011;34(2):115-125.
Background/Aims
Angiotensin (Ang) II contributes to tubulointerstitial fibrosis. Recent data highlight mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) signaling in tubulointerstitial fibrosis; however, the mechanisms remain unclear. Thereby, we investigated the role of Ang II on mTOR/S6K1-dependent proximal tubule (PT) injury, remodeling, and fibrosis.
Methods
We utilized young transgenic Ren2 rats (R2-T) and Sprague-Dawley rats (SD-T) treated with the Ang type 1 receptor (AT1R) blocker telmisartan (2 mg · kg−1 · day−1) or vehicle (R2-C; SD-C) for 3 weeks to examine PT structure and function.
Results
Ren2 rats displayed increased systolic blood pressure, proteinuria and increased PT oxidant stress and remodeling. There were parallel increases in kidney injury molecule-1 and reductions in neprilysin and megalin with associated ultrastructural findings of decreased clathrin-coated pits, endosomes, and vacuoles. Ren2 rats displayed increased Serine2448 phosphorylation of mTOR and downstream S6K1, in concert with ultrastructural basement membrane thickening, tubulointerstitial fibrosis and loss of the adhesion molecule N-cadherin. Telmisartan treatment attenuated proteinuria as well as the biochemical and tubulointerstitial structural abnormalities seen in the Ren2 rats.
Conclusions
Our observations suggest that Ang II activation of the AT1R contributes to PT brush border injury and remodeling, in part, due to enhanced mTOR/S6K1 signaling which promotes tubulointerstitial fibrosis through loss of N-cadherin.
doi:10.1159/000329327
PMCID: PMC3130895  PMID: 21720156
Angiotensin II; mTOR; N-Cadherin; Proximal tubule; Tubulointerstitial fibrosis
3.  Salt-Induced Renal Injury in Spontaneously Hypertensive Rats: Effects of Nebivolol 
American Journal of Nephrology  2010;32(6):557-566.
Background
We investigated renal effects of nebivolol, a selective β1-receptor blocker with additional antioxidative ability, in spontaneously hypertensive rats (SHR) where increased salt intake induces oxidative stress and worsens renal function as a result of further activation of the renin-angiotensin and sympathetic nervous systems.
Methods
Male SHR were given an 8% salt diet (HS; n = 22) for 5 weeks; their age-matched controls (n = 9) received standard chow. Nebivolol was given at a dose of 10 mg/kg/day for 5 weeks in 11 HS rats.
Results
HS increased blood pressure, plasma renin concentration, urinary protein excretion, and renal nitroxidative stress while decreasing renal blood flow and angiotensin 1–7 receptor (mas) protein expression. There was no change in angiotensin II type 1 receptor expression among the experimental groups. Nebivolol did not alter the salt-induced increase in blood pressure but reduced urinary protein excretion, plasma renin concentration, and nitroxidative stress. Nebivolol also increased neuronal NOS expression while preventing the salt-induced decrease in renal blood flow and mas protein expression.
Conclusion
Nebivolol prevented salt-induced kidney injury and associated proteinuria in SHR through a blood pressure-independent mechanism. Its protective effects may be related to reduction in oxidative stress, increases in neuronal NOS and restoration of angiotensin II type 1/mas receptor balance.
doi:10.1159/000321471
PMCID: PMC2992650  PMID: 21042014
Salt; Hypertension; Kidney; Oxidative stress; Nitric oxide; β1-Receptor antagonism
4.  Nebivolol Reduces Proteinuria and Renal NADPH Oxidase-Generated Reactive Oxygen Species in the Transgenic Ren2 Rat 
American Journal of Nephrology  2009;30(4):354-360.
Background/Aims
Renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system activation are crucial in the pathogenesis of hypertension, cardiovascular and renal disease. NADPH oxidase-mediated increases in reactive oxygen species (ROS) are an important mediator for RAAS-induced cardiovascular and renal injury. Increased levels of ROS can diminish the bioactivity of nitric oxide (NO), a critical modulator of RAAS effects on the kidney. Thereby, we hypothesized that in vivo nebivolol therapy in a rodent model of activated RAAS would attenuate glomerular damage and proteinuria through its actions to reduce NADPH oxidase activity/ROS and increase bioavailable NO.
Methods
We utilized the transgenic Ren2 rat which displays heightened tissue RAAS, hypertension, and proteinuria. Ren2 rats (6–9 weeks of age) and age-matched Sprague-Dawley littermates were treated with nebivolol 10 mg/kg/day (osmotic mini-pump) for 21 days.
Results
Ren2 rats exhibited increases in systolic blood pressure, proteinuria, kidney cortical tissue total NADPH oxidase activity and subunits (Rac1, p67phox, and p47phox), ROS and 3-nitrotyrosine, as well as reductions in podocyte protein markers; each of these parameters improved with nebivolol treatment along with increases in renal endothelial NO synthase expression.
Conclusions
Our data suggest that nebivolol improves proteinuria through reductions in renal RAAS-mediated increases in NADPH oxidase/ROS and increases in bioavailable NO.
doi:10.1159/000229305
PMCID: PMC2814025  PMID: 19609077
Nebivolol; Proteinuria; NADPH oxidase; Reactive oxygen species

Results 1-4 (4)