Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  Therapeutic implications of targeting the PI3Kinase/AKT/mTOR signaling module in melanoma therapy 
The PI3Kinase/AKT/mTOR signaling module is implicated in various cellular functions including cell survival, growth and proliferation, glucose metabolism, apoptosis, migration, and angiogenesis. Increased expression of AKT and its up- and downstream regulators is linked to several types of cancer. Aberrant expression of AKT is observed in nearly 60% of melanomas culminating in apoptosis resistance via deactivation of apoptotic molecules Bad and Cas-pase-9. Through cross-talk with NF-κB, ERK1/2, JNK and p38MAPK signaling pathways, AKT induces a plethora of cellular effects often leading to tumor development and progression. Due to frequently observed resistance to other common cancer treatments such as chemotherapy, immunotherapy, and radiation, and the detrimental consequences of constitutive activation of the PI3Kinase/AKT/mTOR signaling module, targeted inhibition of the effectors and substrates involved in this module has become a viable and attractive option for molecular targeted therapy in melanoma. Pharmacological inhibitors of various components of this module, either alone or in combination with other agents, have shown significant decrease in proliferation, tumorigenesis, cell growth and survival of various tumors in phases I and II clinical trials. Some inhibitors have even received their Food and Drug Administration (FDA) approval. This review summarizes the current knowledge on this module, its cross-talk with other major cell survival pathways and its targeted inhibition for therapeutic purposes in melanoma.
PMCID: PMC3304564  PMID: 22485197
PI3Kinase; AKT; mTOR; PTEN; melanoma; targeted therapy; signal transduction; apoptosis; resistance
2.  Potential usage of proteasome inhibitor bortezomib (Velcade, PS-341) in the treatment of metastatic melanoma: basic and clinical aspects 
Protein degradation by proteasome is essential to the regulation of important cellular functions including cell cycle progression, proliferation, differentiation and apoptosis. Abnormal proteasomal degradation of key regulatory proteins perturbs the normal dynamics of these cellular processes culminating in uncontrolled cell cycle progression and decreased apoptosis leading to the characteristic cancer cell phenotype. Proteasome inhibitors are a novel group of therapeutic agents designed to oppose the increased proteasomal degradation observed in various cancers while restoring key cellular functions such as apoptosis, cell cycle progression, and the inhibition of angiogenesis. Several proteasome inhibitors have been evaluated in pre- and clinical studies for their potential usage in clinical oncology. Bortezomib (Velcade, PS-341) is the first Food and Drug Administration-approved proteasome inhibitor for the treatment of multiple myeloma and mantle cell lymphoma. Bortezomib's ability to preferentially induce toxicity and cell death in tumor cells while rendering healthy cells unaffected makes it a powerful therapeutic agent and has extended its use in other types of malignancies. The ability of bortezomib and other proteasome inhibitors to synergize with conventional therapies in killing tumors in various in vitro and in vivo models makes this class of drugs a powerful tool in overcoming acquired and inherent resistance observed in many cancers. This is achieved through modulation of aberrant cellular survival signal transduction pathways and their downstream anti-apoptotic gene products. This review will discuss the anti-neoplastic effects of various proteasome inhibitors in a variety of cancers with a special emphasis on bortezomib, its mechanism of action and role in cancer therapy. We further discuss the potential use of bortezomib in the treatment of metastatic melanoma.
PMCID: PMC3196288  PMID: 22016836
Melanoma; proteasome; apoptosis; immunoresistance; cell signaling; targeted therapy; NF-κB; bortezomib

Results 1-2 (2)