PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (30)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Renal complications of beta-thalassemia major in children 
The success that has been made in the care of patients with thalassemia has led to the emergence of unrecognized complications including several renal abnormalities. Chronic anemia and iron overload as well as the use of iron chelator are believed to lie behind these abnormalities. Many investigators document the presence of tubular dysfunction and abnormalities in glomerular filtration rate in these patients. In this review we will discuss the updates in the diagnosis, pathogenesis and prevention of renal complications of thalassemia.
PMCID: PMC4165117  PMID: 25232499
Children; thalassemia; renal complications
2.  Granulocytic sarcoma: a systematic review 
Granulocytic sarcoma also called myeloid sarcoma is an extramedullary tumor of immature granulocytic cells. It is a rare entity, and mostly accompanied by acute myeloid leukemia. It is observed during the course of myeloproliferative disorders especially in chronic myeloid leukemia and myelodysplastic syndromes. In some rare circumstances, it is detected before clinical signs of leukemia or other diseases. When the bone marrow biopsy reveals no other hematologic malignancies, the granulocytic sarcoma is described as nonleukemic, primary or isolated. It is observed at any part of the body but the most common locations are soft tissues, bone, peritoneum and lymph nodes. Presenting signs or symptoms are mainly due to mass effect of the tumor and dysfunction of the organ, or the tissue that is affected. The diagnosis is performed by biopsy of the tumor. The tumor consists of immature granulocytic cells, which could be documented by H&E, immunohistochemistry, and flow cytometric methods. Fluorescence in-situ hybridization and molecular analysis are also performed. The optimal time and type of treatment is not clear. Surgery could be an option especially for tumors, which cause organ dysfunction and/or obstruction. Systemic treatment should be considered in all patients because without systemic treatment, relapses and progression to acute myeloid leukemia is the ultimate fate of the disease in many cases. Cytarabine-containing remission-induction chemotherapies have been the most applied therapeutic strategies, but it is not clear whether the consolidation therapies are required or not, and what kind of regimens are appropriate. The role of hematopoietic stem cell transplantation (HSC) as a consolidation regimen is not clear, but, after the relapse of the disease with or without bone marrow involvement, HSC transplantation should be considered in suitable patients after the reinduction performed by AML chemotherapies. There is only limited data about the role of radiotherapy in these patients. It could be used in patients with relapsed disease, organ dysfunction which should be quickly relieved and inadequate response to chemotherapy. The effect of radiotherapy on overall survival is not known. New prospective studies and clinical trials are needed to generate guidelines for the treatment of primary granulocytic sarcomas.
PMCID: PMC3875275  PMID: 24396704
Granulocytic sarcoma; treatment; chemotherapy; leukemia
3.  Changes in molecular biology of chronic myeloid leukemia in tyrosine kinase inhibitor era 
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease characterized by a reciprocal translocation between long arms of chromosomes 9 and 22 t(9;22) that generates the BCR-ABL fusion gene. If left untreated, newly diagnosed chronic phase CML patients finally progress to accelerated and blastic phase. After the introduction of tyrosine kinase inhibitors (TKIs), treatment strategies of CML changed dramatically. However, the development of resistance to TKIs started to create problems over time. In this review, the current information about CML biology before and after imatinib mesylate treatment is summarized.
PMCID: PMC3755521  PMID: 23997982
Chronic myeloid leukemia; moleculer biology; imatinib mesylate
4.  Tailoring of chronic lymphatic leukemia therapy 
Chronic lymphocytic leukemia (CLL) remains an incurable disease, with all patients who require therapy destined to relapse and understanding of the pathophysiology of chronic lymphocytic leukemia has advanced significantly. It is now clear that chronic lymphocytic leukemia is a relatively proliferative disorder that requires the help of its microenvironment to be maintained and to progress. The stimulation of the chronic lymphatic leukemia cell occurs in most, if not all, patients through antigen stimulation via the B cell receptors. In addition, there is now a appreciation of the role of the p53 pathway leading to chemoresistance and the elucidation of the molecular and intracellular signaling mechanisms of disease is just beginning to facilitate the development of several targeted small molecules that promise to revolutionize the treatment of Chronic lymphocytic leukemia.
PMCID: PMC3755525  PMID: 23997983
Chronic lymphocytic leukemia; pathophysiology; target therapy
5.  Immune surveillance and lymphoid malignancy in immunocompromised host 
Immune surveillance is a dynamic process that involves an intact immune system to identify and protect the host against tumor development. The increased understanding of the genetics, infections and hematological malignancies in congenital immune deficiency states supports the concept that impaired T cells and Natural-killer/T cells leads to B-cell lymphoma. Furthermore, severe combined immunodeficient mice are prone to spontaneous tumor development and therefore serve as experimental models. Here we discuss the acquired conditions and mechanisms involved in dysregulation of the immune system that lead to lymphoma. Preemptive strategies to improve immune regulation and response and restore a competent immune system may lead to a decrease in lymphoid malignancies.
PMCID: PMC3649811  PMID: 23675561
Lymphoma; immune surveillance; immune deficiency
6.  Understanding basic steps to hematopoietic stem cell transplantation evaluation 
We are celebrating one millionth transplant in year 2013! With continued improvement in hematopoietic cell transplantation (HCT) outcome, the indications for HCT continue to grow. Furthermore the sources of stem cells and the number of suitable matches are expanding. At the same time, modified transplantation regimens have facilitated safer procedures despite increase in patient’s age and comorbidies. In the current era, any patient indicated for HCT has a stem cell source and therefore steps to HCT and coordinated pre-transplant care is an integral part of management to improve transplant outcome. This review discusses our approach to the transplant evaluation process and this article will serve as a valuable tool for primary care physicians and referring hematologists/oncologists.
PMCID: PMC3649815  PMID: 23675562
Transplantation; hematological malignancies; preparation; evaluation
7.  Regulation of innate immunity by extracellular nucleotides 
Extracellular ATP (eATP) is the most abundant among extracellular nucleotides and is commonly considered as a classical danger signal, which stimulates immune responses in the presence of tissue injury. In fact, increased nucleotide concentration in the extracellular space is generally closely associated with tissue stress or damage. However non-lytic nucleotide release may also occur in many cell types under a variety of conditions. Extracellular nucleotides are sensed by a class of plasma membrane receptors called P2 purinergic receptors (P2Rs). P2 receptors are expressed by all immunological cells and their activation elicits different responses. Extracellular ATP can act as an initiator or terminator of immune responses being able to induce different effects on immune cells depending on the pattern of P2 receptors engaged, the duration of the stimulus and its concentration in the extracellular milieu. Millimolar (high) concentrations of extracellular ATP, induce predominantly proinflammatory effects, while micromolar (low) doses exert mainly tolerogenic/immunosuppressive action. Moreover small, but significant differences in the pattern of P2 receptor expression in mice and humans confer diverse capacities of ATP in regulating the immune response.
PMCID: PMC3555188  PMID: 23358447
Extracellular nucleotides; P2 purinergic receptors; extracellular ATP; innate immunity
8.  Regulatory T-cells in chronic lymphocytic leukemia: actor or innocent bystander? 
Regulatory T (Treg) cells are now under extensive investigation in chronic lymphocytic leukemia (CLL). This small subset of T-cells has been, in fact, considered to be involved in the pathogenesis and progression of CLL. However, whether Treg dysregulation in CLL plays a key role or it rather represents a simple epiphenomenon is still matter of debate. In the former case, Treg cells could be appealing for targeting therapies. Finally, Treg cells have also been proposed as a prognostic indicator of the disease clinical course.
PMCID: PMC3555189  PMID: 23358515
Tregs; chronic lymphocytic leukemia; prognosis
9.  Gene mutations and molecularly targeted therapies in acute myeloid leukemia 
Acute myelogenous leukemia (AML) can progress quickly and without treatment can become fatal in a short period of time. However, over the last 30 years fine-tuning of therapeutics have increased the rates of remission and cure. Cytogenetics and mutational gene profiling, combined with the option of allogeneic hematopoietic stem cell transplantation offered in selected patients have further optimized AML treatment on a risk stratification basis in younger adults. However there is still an unmet medical need for effective therapies in AML since disease relapses in almost half of adult patients becoming refractory to salvage therapy. Improvements in the understanding of molecular biology of cancer and identification of recurrent mutations in AML provide opportunities to develop targeted therapies and improve the clinical outcome. In the spectrum of identified gene mutations, primarily targetable lesions are gain of function mutations of tyrosine kinases FLT3, JAK2 and cKIT for which specific, dual and multi-targeted small molecule inhibitors have been developed. A number of targeted compounds such as sorafenib, quizartinib, lestaurtinib, midostaurin, pacritinib, PLX3397 and CCT137690 are in clinical development. For loss-of-function gene mutations, which are mostly biomarkers of favorable prognosis, combined therapeutic approaches can maximize the therapeutic efficacy of conventional therapy. Apart from mutated gene products, proteins aberrantly overexpressed in AML appear to be clinically significant therapeutic targets. Such a molecule for which targeted inhibitors are currently in clinical development is PLK1. We review characteristic gene mutations, discuss their biological functions and clinical significance and present small molecule compounds in clinical development, which are expected to have a role in treating AML subtypes with characteristic molecular alterations.
PMCID: PMC3555190  PMID: 23358589
Acute myeloid leukemia; targeted therapy; mutation; FLT3; NPM1; CEBPA; JAK2
10.  Function of Ikaros as a tumor suppressor in B cell acute lymphoblastic leukemia 
The Ikaros transcription factor is crucial for many aspects of hematopoiesis. Loss of function mutations in IKZF1, the gene encoding Ikaros, have been implicated in adult and pediatric B cell acute lymphoblastic leukemia (B-ALL). These mutations result in haploinsufficiency of the Ikaros gene in approximately half of the cases. The remaining cases contain more severe or compound mutations that lead to the generation of dominant-negative proteins or complete loss of function. All IKZF1 mutations are associated with a poor prognosis. Here we review the current genetic, clinical and mechanistic evidence for the role of Ikaros as a tumor suppressor in B-ALL.
PMCID: PMC3555193  PMID: 23358883
B cell leukemia; Ikaros; tumor suppressor
11.  Management of respiratory viral infections in hematopoietic cell transplant recipients 
Advances in stem cell transplantation procedures and the overall improvement in the clinical management of hematopoietic cell transplant (HCT) recipients over the past 2 decades have led to an increase in survival duration, in part owing to better strategies for prevention and treatment of post-transplant complications, including opportunistic infections. However, post-HCT infections remain a concern for HCT recipients, particularly infections caused by community respiratory viruses (CRVs), which can lead to significant morbidity and mortality. These viruses can potentially cause lower respiratory tract illness, which is associated with a higher mortality rate among HCT recipients. Clinical management of CRV infections in HCT recipients includes supportive care and antiviral therapy, especially in high-risk individuals, when available. Directed antiviral therapy is only available for influenza infections, where successful use of neuraminidase inhibitors (oseltamivir or zanamivir) and/or M2 inhibitors (amantadine or rimantadine) has been reported. Data on the successful use of ribavirin, with or without immunomodulators, for respiratory syncytial virus infections in HCT recipients has emerged over the past 2 decades but is still controversial at best because of a lack of randomized controlled trials. Because of the lack of directed antiviral therapy for most of these viruses, prevention should be emphasized for healthcare workers, patients, family, and friends and should include the promotion of the licensed inactivated influenza vaccine for HCT recipients, when indicated. In this review, we discuss the clinical management of respiratory viruses in this special patient population, focusing on commercially available antivirals, adjuvant therapy, and novel drugs under investigation, as well as on available means for prevention.
PMCID: PMC3512176  PMID: 23226621
RSV; influenza; parainfluenza; adenovirus; rhinovirus; metapneumovirus; HCT; transplant; cancer; immunocompromised host; antiviral therapy; infection prevention
12.  Hematopoietic stem cells: interplay with immunity 
Ample evidence indicated that hematopoietic stem cells (HSCs) receive signaling from infection or other immune responses to adjust their differentiation and self-renewal. More recent reports also suggested that, while the bone marrow microenvironment or niche may provide the immune privilege for HSCs, HSCs can present surface immune inhibitors per se to suppress innate immunity and adaptive immunity to evade potential immune surveillance and attack. These findings support the hypothesis that HSCs are capable of interacting with the immune system as signal “receivers” and signal “providers”. On the one hand, HSCs are capable of directly sensing the signals from the immune system through their surface receptors to modulate their self-renewal and differentiation (“in” signaling); on the other hand, HSCs display surface immune inhibitory molecules to evade the attack from the innate and adaptive immune systems (“out” signaling). The continuing investigation of the interplay between HSCs and immunity may lead to the open-up of a new research filed – the immunology of stem cells.
PMCID: PMC3512180  PMID: 23226622
Hematopoietic stem cells; immunity; immune privilege; CD47; CD274; LILRB2; PIR-B; immune inhibitory receptors; infection; inflammation
13.  Unbalanced replication as a major source of genetic instability in cancer cells 
The origin of genetic instability in tumors is a matter of debate: while the prevailing model postulates a mutator phenotype resulting from an alteration in a caretaker gene as a prerequisite for genetic alterations leading to tumor formation, there is evidence against this model in the majority of cancers. A model for chromosomal instability should take into account the role of oncogenes in directly stimulating DNA and cellular component replication, creating aberrant structures when overexpressed. I will distinguish here two distinct mechanisms for the genetic instability of tumors: primary and secondary. Primary genetic instability is dependent on the inactivation of genes involved in maintaining genetic stability (caretaker genes), whereas secondary genetic instability is dependent on genes involved in tumor progression, i.e. oncogenes and tumor suppressor genes of the gatekeeper type. Secondary genetic instability, the most frequent condition, can be explained by the fact that some of the genes involved in tumor progression control replication of cell structures from within, leading to replication unbalance.
PMCID: PMC3484411  PMID: 23119227
Genetic instability; tumorigenesis; oncogenes; tumor suppressor genes; DNA replication; cell replication; replication unbalance; chromosomal instability
14.  Benefits of hypoxic culture on bone marrow multipotent stromal cells 
Cultivation of cells is usually performed under atmospheric oxygen tension; however, such a condition does not replicate the hypoxic conditions of normal physiological or pathological status in the body. Recently, the effects of hypoxia on bone marrow multipotent stromal cells (MSCs) have been investigated. In a long-term culture, hypoxia can inhibit senescence, increase the proliferation rate and enhance differentiation potential along the different mesenchymal lineages. Hypoxia also modulates the paracrine effects of MSCs, causing upregulation of various secretable factors, including the vascular endothelial growth factor and interleukin-6, and thereby promoting wound healing and diabetic fracture healing. Finally, hypoxia plays an important role in mobilization and homing of MSCs, primarily by its ability to induce stromal cell-derived factor-1 expression along with its receptor, CXCR4. After transplantation, an ischemic environment, that is the combination of hypoxia and lack of nutrition, can lead to apoptosis or cell death, which can be overcome by the hypoxic preconditioning of MSCs and overexpression of prosurvival genes like Akt, HO-1 and Hsp70. This review emphasizes that hypoxia is an important factor in all major aspects of stem cell biology, and the mechanism involved in the hypoxic inducible factor-1signaling pathway behind these responses is also discussed.
PMCID: PMC3484415  PMID: 23119226
Mesenchymal stem cells; hypoxia; hypoxic preconditioning; proliferation; differentiation potential; apoptosis; migration; engraftment; HIF-1
15.  Emerging therapeutic options for myelofibrosis: a Canadian perspective 
Myelofibrosis (MF) is a clonal stem cell disorder characterized by cytopenias, splenomegaly, marrow fibrosis, and systemic symptoms due to elevated inflammatory cytokines. MF is associated with decreased survival. The quality of life of patients with MF is similar to other advanced malignancies. Allogeneic hematopoietic cell transplantation is a curative treatment, but is applicable to a minority of patients with MF. None of the conventional therapies are known to alter the natural history of the disease. Significant progress has been made in the last few years in the understanding of disease biology of MF. Discovery of the JAK2V617F mutation paved the way for drug discovery in MF, and the first JAK1/2 inhibitor, ruxolitinib, has been approved by FDA and Health Canada. Several other JAK1/2 inhibitors are at various stages of clinical development. As a consequence, the therapeutic landscape of MF is changing from a disease where no effective therapies existed to one with several novel treatment options on the horizon. In this report, we assess the changing therapeutic options for MF, and critically analyze the position of novel treatments in the current armamentarium.
PMCID: PMC3484412  PMID: 23119228
Myelofibrosis; JAK1/2; ruxolitinib; splenomegaly; treatment options
16.  A long road of T-cells to cure cancer: from adoptive immunotherapy with unspecific cellular products to donor lymphocyte infusions and transfer of engineered tumor-specific T-cells 
The notion that immunocompetent cells, contained within adult bone marrow or peripheral blood, are capable of mediating an antitumor effect was first validated experimentally in 1957. T-cell immunotherapy for malignant disease is now routinely used in the context of allogeneic bone marrow transplantation. After 50 years of investigations into the use of T-cells for cancer therapy, adoptive cellular immunotherapy for cancer has progressed from the delivery of unspecific cellular products to the transfer of engineered tumor-specific T-cells. Adoptive cellular immunotherapy for cancer has now reached a stage of increasing feasibility and efficacy.
PMCID: PMC3384398  PMID: 22762028
Immunocompetent cells; antitumor effect; T-cell immunotherapy; allogeneic bone marrow transplantation; tumor-specific T-cells
17.  Advances and application of radioimmunotherapy in non-Hodgkin lymphoma 
The activity of radio-immuno conjugate in Non-Hodgkin Lymphoma (NHL) has resulted in FDA approval of two antibodies, Y90 Ibritumomab tiuxetan and I131 tositumomab. Both these agents target CD20, a receptor widely expressed in B-Cell NHL. These immunoconjugates deliver their radioactive payload to the malignant clone in the bone marrow and lymph node. Their use has been associated with modest improvement in survival end points among several lymphoma histologies. The promising effect on disease control as well as their efficacy in disease relapse is encouraging in low grade lymphoma. Radioimmunotherapy (RIT) is increasingly being explored in the setting of consolidation as well as conditioning regimens prior to stem cell transplantation. Here, we summarize the clinical use, complications and future applications of RIT in NHL.
PMCID: PMC3384399  PMID: 22762027
Radioimmunotherapy; non-Hodgkin lymphoma; stem cell transplantation; CD20 target
18.  Cancer-testis antigens: the current status on antigen regulation and potential clinical use 
Immunotherapy is theoretically an attractive therapeutic option for patients with hematological malignancies. Various laboratory studies suggested the importance of the choice of tumor antigen for successful immunotherapy. Cancer-testis antigens (CTAs) are potentially suitable molecules for tumor vaccines of hematological malignancies because of their high immunogenicity in vivo, even in cancer-bearing patients, and their relatively restricted normal tissue distribution. Tumor cell kill using a CTA-based immunotherapy will, therefore, be more specific and associated with less toxicities when compared to chemotherapy. Many CTAs have been identified in various hematologic malignancies. In this review, we will take the readers through the journey of hopes and the disappointments arisen from the discovery of CTAs. We will describe the features of CTAs and their expression in hematologic malignancies. We will also discuss the mechanisms regulating the expression of these CTAs, from a primary regulatory mechanism involving DNA methylation to secondary controls by cytokines. Finally, we will address the potential obstacles that will prevent the successful use of CTAs as targets for tumor immunotherapy.
PMCID: PMC3301432  PMID: 22432085
Cancer-testis antigens; hematological malignancies; DNA methylation; heterogeneity of antigen expression
19.  HMGB1 is a therapeutic target for leukemia 
High mobility group box 1 (HMGB1) is a nuclear DNA-binding protein, which functions as Damage Associated Molecular Pattern molecule (DAMP) when released from cells under conditions of stress, such as injury and infection. Recent studies indicate that HMGB1 plays an important role in leukemia pathogenesis and chemotherapy resistance. Serum HMGB1 is increased in childhood acute lymphocytic leukemia as compared to healthy control and complete remission groups. Moreover, HMGB1 is a negative regulator of apoptosis in leukemia cells through regulation of Bcl-2 expression and caspase-3 activity. As a positive regulator of autophagy, intracellular HMGB1 interacts with Beclin 1 in leukemia cells leading to autophagosome formation. Additionally, exogenous HMGB1 directly induces autophagy and cell survival in leukemia cells. Experimental strategies that selectively target HMGB1 effectively reverse and prevent chemotherapy resistance in leukemia cells, suggesting that HMGB1 is a novel therapeutic target in leukemia.
PMCID: PMC3301433  PMID: 22432086
HMGB1; leukemia; apoptosis; autophagy; chemotherapy
20.  Role of high-dose melphalan and autologous peripheral blood stem cell transplantation in AL amyloidosis 
AL amyloidosis is the most common form of systemic amyloidosis and is associated with an underlying plasma cell dyscrasia. The disease is often difficult to recognize because of its broad range of manifestations and, what are often, vague symptoms. Recent diagnostic and prognostic advances include the serum free light chain assay, cardiac magnetic resonance imaging, and serologic cardiac biomarkers. Treatment strategies that have evolved during the past decade are prolonging survival and preserving organ function in patients with this disease. This review outlines the role of high dose melphalan and stem cell transplantation in the treatment of AL amyloidosis.
PMCID: PMC3301435  PMID: 22432083
AL amyloidosis; stem cell transplantation; melphalan
21.  Vav1 in hematologic neoplasms, a mini review 
The Vav family of proteins are guanine nucleotide exchange factors which have been shown to be deregulated in several types of human cancer. There are three members of the Vav family that have been identified which are members of the Dbl domain superfamily and have specificity towards Rho/Rac GTPases. The Vav family plays an important role in normal hematologic system development and homeostasis, and Vav1 is largely restricted to the hematologic system. While Vav1 was originally identified as a proto-oncogene, several recent studies have shown that Vav family deletion leads to the development of T-cell malignancies in mice. In addition, Vav1 has been shown to play a role in the ATRA-mediated differentiation of promyelocytic leukemia cells. In this concise review, the gene structure and normal function of Vav1, as well as a possible role for Vav1 in the development of hematologic and other malignancies is reviewed.
PMCID: PMC3301436  PMID: 22432082
Vav1; guanine nucleotide exchange factor; lymphoma; leukemia
22.  The role of transcription factors in the guidance of granulopoiesis 
In recent years, the prospective isolation of hematopoietic stem and progenitor cells has identified the hierarchical structure of hematopoietic development and lineage-commitment. Moreover, these isolated cell populations allowed the elucitation of the molecular mechansims associated with lineage choice and revealed the indispensable functions of transcription factors as lineage determinants. This review summarizes current concepts regarding adult murine granulopoiesis and illustrates the importance of the transcription factors C/EBPα, PU.1 and GATA-2 for the development of neutrophil, eosinophil and basophil granulocytes.
PMCID: PMC3301437  PMID: 22432088
Granulopoiesis; transcription factors; C/EBPα
23.  The association of hepatitis B virus infection with B-cell non-Hodgkin lymphoma – a review 
Epidemiological studies performed over the last decade have demonstrated a positive association between persistent, hepatitis B surface antigen (HBsAg)-positive hepatitis B virus (HBV) infection and B-cell non-Hodgkin lymphoma (NHL), with HBV-infected patients having a 2-3-fold higher risk to develop NHL than non-infected patients. Moreover, there is evidence that also occult HBV infection (HBsAg-negative, HBV DNA-positive) associates with NHL. An association with HBV infection may exist also for other hematological malignancies, but available evidence is much less persuasive than for NHL. In this review article we will discuss available results on the association between HBsAg-positive HBV infection and NHL, as well as the significance of other serological markers of HBV infection in these subjects. We will also discuss the possible etiopathogenic role of HBV, and propose a multifactorial model for lymphomagenesis. Experimental evidence for multifactorial etiopathogenesis has been obtained in recent years for HBV-associated hepatocellular carcinoma (HCC), and we suggest that a similar model may apply to HBV-associated lymphoma as well. Eventually, we will also address some unresolved questions. Two of these are of particular relevance. First, do HBV-positive NHL patients show regression of their hematologic malignancy upon antiviral therapy? A positive answer would represent a direct demonstration of the necessary etiological role of the virus in the development of NHL, as has been shown previously for HCV-associated lymphomas. Second, if HBV plays a necessary role in lymphomagenesis, then expansion of HBV vaccination is expected to reduce the number of incident NHL cases, even though this effect might become evident only after a long time interval. Studies in those countries which have introduced universal HBV vaccination about two decades ago, like Italy, may soon provide results on this important point.
PMCID: PMC3301438  PMID: 22432084
Hepatitis B virus; occult infection; anti-HBs antibodies; anti-HBe antibodies; anti-HBc antibodies; non-Hodgkin lymphoma; hematologic malignancies; antiviral therapy; multicausal etiology; vaccination
24.  Platelet-derived growth factors and their receptors in normal and malignant hematopoiesis 
Platelet-derived growth factors (PDGF) bind to two closely related receptor tyrosine kinases, PDGF receptor α and β, which are encoded by the PDGFRA and PDGFRB genes. Aberrant activation of PDGF receptors occurs in myeloid malignancies associated with hypereosinophilia, due to chromosomal alterations that produce fusion genes, such as ETV6-PDGFRB or FIP1L1-PDGFRA. Most patients are males and respond to low dose imatinib, which is particularly effective against PDGF receptor kinase activity. Recently, activating point mutations in PDGFRA were also described in hypereosinophilia. In addition, autocrine loops have been identified in large granular lymphocyte leukemia and HTLV-transformed lymphocytes, suggesting new possible indications for tyrosine kinase inhibitor therapy. Although PDGF was initially purified from platelets more than 30 years ago, its physiological role in the hematopoietic system remains unclear. Hematopoietic defects in PDGF-deficient mice have been reported but appear to be secondary to cardiovascular and placental abnormalities. Nevertheless, PDGF acts directly on several hematopoietic cell types in vitro, such as megakaryocytes, platelets, activated macrophages and, possibly, certain lymphocyte subsets and eosinophils. The relevance of these observations for normal human hematopoiesis remains to be established.
PMCID: PMC3301440  PMID: 22432087
Receptor tyrosine kinase; hypereosinophilia; signal transduction; imatinib; myeloproliferative disorders; myeloid neoplasms; chronic eosinophilic leukemia; hypereosinophilic syndrome
25.  Treatment of FLT3-ITD acute myeloid leukemia 
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy which is cured in a minority of patients. A FLT3-internal tandem duplication (ITD) mutation, found in approximately a quarter of patients with de novo AML, imparts a particularly poor prognosis. Patients with FLT3-ITD AML often present with more aggressive disease and have a significantly higher propensity for relapse after remission. The therapeutic approach for these patients has traditionally included intensive induction chemotherapy, followed by consolidative chemotherapy or hematopoietic cell transplantation (HCT). In recent years, multiple small molecule inhibitors of the FLT3 tyrosine kinase have been studied preclinically and in clinical trials. The earlier generation of these agents, often non-specific and impacting a variety of tyrosine kinases, produced at best transient peripheral blood responses in early clinical trials. Additionally, the combination of FLT3 inhibitors with cytotoxic regimens has not, as of yet, demonstrated an improvement in overall survival. Nevertheless, multiple current trials, including those with sorafenib, lestaurtinib, and midostaurin, continue to study the combination of FLT3 inhibitors with standard chemotherapy. Factors such as sustained FLT3 inhibition, protein binding, pharmacokinetics, and the presence of elevated FLT3-ligand levels appear to significantly impact the potency of these agents in vivo. In recent years, the development of more specific and potent agents has generated hope that FLT3 inhibitors may play a more prominent role in the treatment of FLT3-ITD AML in the near future. Nevertheless, questions remain regarding the optimal timing and schedule for incorporation of FLT3 inhibitors. The suitability, type, and timing of allogeneic HCT in the therapeutic approach for these patients are also issues which require further study and definition. Recent retrospective data appears to support the efficacy of allogeneic HCT in first complete remission, possibly due to a graft versus leukemia effect. However, larger prospective studies are necessary to further elucidate the role of HCT and its potential combination with FLT3 inhibitor therapy. We are hopeful that current clinical investigation will lead to an optimization and improvement of outcomes for these patients.
PMCID: PMC3301423  PMID: 22432079

Results 1-25 (30)