Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)
Year of Publication
Document Types
1.  β-site amyloid precursor protein-cleaving enzyme 1(BACE1) inhibitor treatment induces Aβ5-X peptides through alternative amyloid precursor protein cleavage 
The β-secretase enzyme, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), cleaves amyloid precursor protein (APP) in the first step in β-amyloid (Aβ) peptide production. Thus, BACE1 is a key target for candidate disease-modifying treatment of Alzheimer’s disease. In a previous exploratory Aβ biomarker study, we found that BACE1 inhibitor treatment resulted in decreased levels of Aβ1-34 together with increased Aβ5-40, suggesting that these Aβ species may be novel pharmacodynamic biomarkers in clinical trials. We have now examined whether the same holds true in humans.
In an investigator-blind, placebo-controlled and randomized study, healthy subjects (n =18) were randomly assigned to receive a single dose of 30 mg of LY2811376 (n =6), 90 mg of LY2811376 (n =6), or placebo (n =6). We used hybrid immunoaffinity-mass spectrometry (HI-MS) and enzyme-linked immunosorbent assays to monitor a variety of Aβ peptides.
Here, we demonstrate dose-dependent changes in cerebrospinal fluid (CSF) Aβ1-34, Aβ5-40 and Aβ5-X after treatment with the BACE1-inhibitor LY2811376. Aβ5-40 and Aβ5-X increased dose-dependently, as reflected by two independent methods, while Aβ1-34 dose-dependently decreased.
Using HI-MS for the first time in a study where subjects have been treated with a BACE inhibitor, we confirm that CSF Aβ1-34 may be useful in clinical trials on BACE1 inhibitors to monitor target engagement. Since it is less hydrophobic than longer Aβ species, it is less susceptible to preanalytical confounding factors and may thus be a more stable marker. By independent measurement techniques, we also show that BACE1 inhibition in humans is associated with APP-processing into N-terminally truncated Aβ peptides via a BACE1-independent pathway.
Trial registration NCT00838084. Registered: First received: January 23, 2009, Last updated: July 14, 2009, Last verified: July 2009.
PMCID: PMC4233234  PMID: 25404952
2.  Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease 
The objective was to study whether α-synuclein oligomers are altered in the cerebrospinal fluid (CSF) of patients with dementia, including Parkinson disease with dementia (PDD), dementia with Lewy bodies (DLB), and Alzheimer disease (AD), compared with age-matched controls.
In total, 247 CSF samples were assessed in this study, including 71 patients with DLB, 30 patients with PDD, 48 patients with AD, and 98 healthy age-matched controls. Both total and oligomeric α-synuclein levels were evaluated by using well-established immunoassays.
The levels of α-synuclein oligomers in the CSF were increased in patients with PDD compared with the controls (P < 0.05), but not in patients with DLB compared with controls. Interestingly, the levels of α-synuclein oligomers in the CSF were also significantly higher in patients with PDD (P < 0.01) and DLB (P < 0.05) compared with patients with AD. The levels of CSF α-synuclein oligomers and the ratio of oligomeric/total-α-synuclein could distinguish DLB or PDD patients from AD patients, with areas under the curves (AUCs) of 0.64 and 0.75, respectively. In addition, total-α-synuclein alone could distinguish DLB or PDD patients from AD patients, with an AUC of 0.80.
The levels of α-synuclein oligomers were increased in the CSF from α-synucleinopathy patients with dementia compared with AD cases.
PMCID: PMC4075410  PMID: 24987465
3.  Modulation of β-amyloid by a single dose of GSK933776 in patients with mild Alzheimer’s disease: a phase I study 
In this study, we evaluated the safety and pharmacodynamic effects of the Fc-inactivated anti-β-amyloid (anti-Aβ) monoclonal antibody GSK933776 in patients with mild Alzheimer’s disease and mild cognitive impairment. Aβ and tau levels were investigated in cerebrospinal fluid (CSF), and the relationship between Aβ levels and Aβ modulation in plasma was explored. The feasibility of a continuous sampling method using a lumbar catheter was assessed.
This trial was a phase I, open-label, uncontrolled, single-dose, exploratory experimental medicine study of intravenous GSK933776 at doses of 1 mg/kg, 3 mg/kg or 6 mg/kg (n = 6/group). The time course of plasma and CSF concentrations of GSK933776 and Aβ was assessed. Sample size was based on feasibility, and no formal statistical analyses were performed.
Following administration of GSK933776 at doses of 1 mg/kg, 3 mg/kg and 6 mg/kg, there were decreases from baseline in CSF Aβ1–42 (from 0 to 12 hours) by 22.8 pg/ml (6.2%), 43.5 pg/ml (9.2%) and 60.5 pg/ml (12.5%), respectively. Plasma concentrations of total Aβ18–35 and Aβ4228–42 increased immediately after infusion and CSF tau concentration increased slightly, but did not significantly change, following administration of all doses of GSK933776. Pharmacokinetics confirmed the presence of GSK933776 in the CSF, which exhibited a dose–response relationship. One patient underwent minor surgery without sequelae following a ruptured lumbar catheter.
GSK933776 demonstrated pharmacological activity and target engagement in CSF and plasma, and the continuous sampling method via a catheter successfully assessed the Aβ changes following single-dose administration of GSK933776.
Trial registration Identifier: NCT01424436. Registered 4 August 2011
PMCID: PMC4055052  PMID: 24716469
4.  Amyloid-beta 42 adsorption following serial tube transfer 
Cerebrospinal fluid (CSF) amyloid-beta 38 (Aβ38), 40 (Aβ40), 42 (Aβ42) and total tau (T-tau) are finding increasing utility as biomarkers of Alzheimer’s disease (AD). The purpose of this study was to determine whether measured CSF biomarker concentrations were affected by transfer of CSF between tubes, and whether addition of a non-ionic surfactant mitigates any observed effects.
AD and control CSF was transferred consecutively between polypropylene tubes. Aβ peptides and T-tau were measured with and without addition of Tween 20 (0.05%).
Measured concentrations of Aβ42 decreased by approximately 25% with each consecutive transfer. Measured concentrations of Aβ38 and Aβ40 were also observed to decrease significantly with each consecutive transfer (approximately 16% loss per transfer). Measured concentrations of T-tau also decreased significantly, but at much smaller magnitude than the Aβ peptides (approximately 4% loss per transfer). The addition of Tween 20 mitigated this effect in all samples.
Consecutive CSF transfer between tubes has a significant impact on the measured concentration of all Aβ peptides, and significant effect of lesser magnitude on T-tau. This would be sufficient to alter biomarker ratios enough to mislead diagnosis. The introduction of Tween 20 at the initial aliquoting stage was observed to significantly mitigate this effect.
PMCID: PMC4059346  PMID: 24472496
5.  Cerebrospinal fluid biomarkers for Alzheimer disease and subcortical axonal damage in 5,542 clinical samples 
The neuronal loss in Alzheimer disease (AD) has been described to affect grey matter in the cerebral cortex. However, in the elderly, AD pathology is likely to occur together with subcortical axonal degeneration on the basis of cerebrovascular disease. Therefore, we hypothesized that biomarkers for AD and subcortical axonal degeneration would correlate in patients undergoing testing for dementia biomarkers, particularly in older age groups.
We performed correlation and cluster analyses of cerebrospinal fluid (CSF) biomarker data from 5,542 CSF samples analyzed in our routine clinical neurochemistry laboratory in 2010 through 2012 for the established CSF AD biomarkers total tau (T-tau), phosphorylated-tau (P-tau), amyloid β1-42 (Aβ42), and for neurofilament light (NFL), which is a protein expressed in large-caliber myelinated axons, the CSF levels of which correlate with subcortical axonal injury.
Aβ42, T-tau, and P-tau correlated with NFL. By cluster analysis, we found a bimodal data distribution in which a group with a low Aβ42/P-tau ratio (suggesting AD pathology) had high levels of NFL. High levels of NFL also correlated with the presence of an AD biomarker pattern defined by Aβ42/P-tau and T-tau. Only 29% of those with an AD biomarker signature had normal NFL levels. Age was a possible confounding factor for the associations between NFL and established AD biomarkers, but in a logistic regression analysis, both age and NFL independently predicted the AD biomarker pattern.
The association between an AD-like signature using the established biomarkers Aβ42, T-tau, and P-tau with increased levels of NFL provides in vivo evidence of an association between AD and subcortical axonal degeneration in this uniquely large dataset of CSF samples tested for dementia biomarkers.
PMCID: PMC3978733  PMID: 24479774
7.  Use of theragnostic markers to select drugs for phase II/III trials for Alzheimer disease 
In a slowly progressive disorder like Alzheimer disease, evaluation of the clinical effect of novel drug candidates requires large numbers of patients and extended treatment periods. Current cell- and animal-based disease models of Alzheimer disease are poor at predicting a positive treatment response in patients. To help bridge the gap between disease models and large and costly clinical trials with high failure rates, biomarkers for the intended biochemical drug effect may be of value. Such biomarkers may be called 'theragnostic'. Here, we review the literature addressing the prospective value of these biomarkers.
PMCID: PMC3031878  PMID: 21122172
8.  Is it time for biomarker-based diagnostic criteria for prodromal Alzheimer's disease? 
Drug candidates targeting amyloid-β (Aβ) pathology in Alzheimer's disease are in different phases of clinical trials. These treatments will probably be most effective in the earlier stages of the disease, before neurodegeneration is too severe, but at the same time symptoms are vague and the clinical diagnosis is difficult. Recent research advances have resulted in promising biomarkers, including cerebrospinal fluid analyses for tau and Aβ, magnetic resonance imaging measurement of atrophy, and positron emission tomography imaging of glucose metabolism and Aβ pathology, which allow identification of prodromal Alzheimer's disease. More details are needed, however, on how these biomarkers can be standardized, to allow a general implementation in the clinical routine diagnostic work-up of patients with cognitive disturbances.
PMCID: PMC2876786  PMID: 20441609
9.  A novel Aβ isoform pattern in CSF reflects γ-secretase inhibition in Alzheimer disease 
LY450139 (semagacestat) inhibits γ-secretase, a key enzyme for generation of amyloid β (Aβ), the peptide deposited in plaques in Alzheimer disease (AD). Previous data have shown that LY450139 lowers plasma Aβ, but has no clear effect on Aβ1-40 or Aβ1-42 levels in cerebrospinal fluid (CSF). By using targeted proteomics techniques, we recently identified several shorter Aβ isoforms, such as Aβ1-16, that in experimental settings increase during γ-secretase inhibitor treatment, and thus may serve as sensitive biochemical indices of the treatment effect. Here, we test the hypothesis that these shorter Aβ isoforms may be biomarkers of γ-secretase inhibitor treatment in clinical trials.
In a phase II clinical trial, 35 individuals with mild to moderate AD were randomized to placebo (n = 10) or LY450139 (100 mg (n = 15) or 140 mg (n = 10)) and underwent lumbar puncture at baseline and after 14 weeks of treatment. The CSF Aβ isoform pattern was analyzed with immunoprecipitation combined with MALDI-TOF mass spectrometry.
The CSF levels of Aβ1-14, Aβ1-15, and Aβ1-16 showed a dose-dependent increase by 57% and 74%, 21% and 35%, and 30% and 67%, respectively in the 100-mg and 140-mg treatment groups. Aβ1-40 and Aβ1-42 were unaffected by treatment.
CSF Aβ1-14, Aβ1-15, and Aβ1-16 increase during γ-secretase inhibitor treatment in AD, even at doses that do not affect Aβ1-42 or Aβ1-40, probably because of increased substrate availability of the C99 APP stub (APP β-CTF) induced by γ-secretase inhibition. These Aβ isoforms may be novel sensitive biomarkers to monitor the biochemical effect in clinical trials.
Trial registration
Clinical NCT00244322
PMCID: PMC2876785  PMID: 20350302

Results 1-9 (9)