PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Cerebral inflammation is an underlying mechanism of early death in Alzheimer’s disease: a 13-year cause-specific multivariate mortality study 
Introduction
Although Alzheimer’s disease (AD) is associated with early death, its life expectancy differs greatly between patients. A better understanding of this heterogeneity may reveal important disease mechanisms underlying the malignancy of AD. The aim of this study was to examine the relation between AD pathologies and early death in AD caused by dementia.
Methods
At a memory clinic, 247 referred consecutive patients with AD were monitored during 12.6 ± 1.6 years. Multivariate Cox regression analyses were performed with baseline measures of amyloid beta (Aβ) pathology (APOE genotype, cerebrospinal fluid (CSF) Aβ42) tau pathology (CSF phosphorylated tau and total tau), cerebrovascular pathology (white-matter lesions and CSF/serum albumin ratio), neuroinflammatory pathology (CSF soluble vascular cell adhesion molecule-1, sVCAM-1), frontal, temporal, and central brain atrophies, global cognition, sex, and age. Comorbidities and medications also were analyzed. All continuous variables were transformed to z scores to compare hazard ratios (HRs) and 95% confidence intervals (CIs).
Results
At follow-up, 89% of the patients had died. The mean survival time was 6.4 ± 3.0 years. The AD pathology that independently predicted an early death caused by dementia was cerebral inflammation (sVCAM-1; HR, 1.32; 95% CI, 1.07–1.64). Other independent predictors were lower global cognition (HR, 0.51; 95% CI, 0.43–0.61), frontal atrophy (HR, 1.38; 95% CI, 1.12–1.70), and medial temporal atrophy (HR, 1.23; 95% CI, 1.02–1.49). When examining death caused by dementia and related causes (vascular diseases and infections), age (HR, 1.23; 95% CI, 1.04–1.46) and cerebrovascular pathology (white-matter lesions: HR, 1.17; 95% CI, 1.01–1.36; and CSF/serum albumin ratio: HR, 1.16; 95% CI, 1.001–1.34) were also significant risk factors in addition to the previous variables. No comorbidity or medication was significant in the specific-cause models.
Conclusions
This is the first study to link neuroinflammation independently to early death in AD and, hence, a rapidly progressing disease. Frontal and medial temporal atrophies and low cognition were also significant predictors. These are probably downstream biomarkers that reflect neuronal degeneration and late-stage disease. Our results suggest that inflammation, and not amyloid or tau pathology, is an independent underlying mechanism in the malignancy of AD.
doi:10.1186/alzrt271
PMCID: PMC4246671  PMID: 25435921
2.  Progression of mild Alzheimer’s disease: knowledge and prediction models required for future treatment strategies 
Introduction
Knowledge of longitudinal progression in mild Alzheimer’s disease (AD) is required for the evaluation of disease-modifying therapies. Our aim was to observe the effects of long-term cholinesterase inhibitor (ChEI) therapy in mild AD patients in a routine clinical setting.
Methods
This was a prospective, open-label, non-randomized, multicenter study of ChEI treatment (donepezil, rivastigmine or galantamine) conducted during clinical practice. The 734 mild AD patients (Mini-Mental State Examination (MMSE) score 20 to 26) were assessed at baseline and then semi-annually over three years. Outcome measures included the MMSE, Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog), Clinician’s Interview-Based Impression of Change (CIBIC) and Instrumental Activities of Daily Living (IADL) scale.
Results
After three years of ChEI therapy, 31% (MMSE) and 33% (ADAS-cog) of the patients showed improved/unchanged cognitive ability, 33% showed improved/unchanged global performance and 14% showed improved/unchanged IADL capacity. Higher mean dose of ChEI and lower educational level were both predictors of more positive longitudinal cognitive and functional outcomes. Older participants and those with a better IADL score at baseline exhibited a slower rate of cognitive decline, whereas younger participants and those with higher cognitive status showed more preserved IADL ability over time. Gender and apolipoprotein E (APOE) genotype showed inconsistent results. Prediction models using the abovementioned scales are presented.
Conclusions
In naturalistic mild AD patients, a marked deterioration in IADL compared with cognitive and global long-term outcomes was observed, indicating the importance of functional assessments during the early stages of the disease. The participants’ time on ChEI treatment before inclusion in studies of new therapies might affect their rate of decline and thus the comparisons of changes in scores between various studies. An increased understanding of expected disease progression in different domains and potential predictors of disease progression is essential for assessment of future therapies in AD.
doi:10.1186/alzrt210
PMCID: PMC3978889  PMID: 24099236
3.  Dose and plasma concentration of galantamine in Alzheimer's disease - clinical application 
Introduction
Patients with Alzheimer's disease (AD) are currently treated with cholinesterase inhibitors, such as galantamine, without actual knowledge of its concentration in plasma. Our objective was to analyse potential relationships between galantamine concentration, galantamine dose, socio-demographic characteristics, body weight, body mass index (BMI), and treatment response.
Methods
Eighty-four patients with AD recruited from the Memory Clinic, Malmö, Sweden, and treated with galantamine were included in the study. Efficacy measures, including cognition (Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale - cognitive subscale (ADAS-cog)) and instrumental activities of daily living (IADL), were evaluated at baseline, 2 months after treatment initiation (MMSE only) and semi-annually over 3 years. At these assessments, blood samples were obtained for the analysis of the galantamine concentration, and body weight, BMI, drug dose and time from drug intake were recorded.
Results
All patients had a measurable concentration of galantamine at all assessments. The mean plasma concentration of the drug exhibited a positive linear association with dose (r = 0.513, P < 0.001). The dose did not differ between sexes. Negative linear associations between the galantamine plasma concentration and BMI (r = -0.454, P = 0.001) or body weight (r = -0.310, P = 0.034) were found exclusively in the male group. When mixed-effects models were used, the dose of galantamine (P < 0.001), time from drug intake (P < 0.001), and BMI (P = 0.021) or weight (P = 0.002) were factors that predicted the concentration, whereas sex, age, and cognitive and functional changes were not.
Conclusions
High compliance to galantamine treatment was found among all patients in this naturalistic AD study. The impact of BMI or body weight on the plasma concentration of galantamine was important only among males. No relationship was observed between concentration and short-term treatment response or progression rate in terms of cognitive and functional abilities.
doi:10.1186/alzrt156
PMCID: PMC3580330  PMID: 23286718
4.  Predictors of long-term cognitive outcome in Alzheimer's disease 
Introduction
The objective of this study was to describe the longitudinal cognitive outcome in Alzheimer's disease (AD) and analyze factors that affect the outcome, including the impact of different cholinesterase inhibitors (ChEI).
Methods
In an open, three-year, nonrandomized, prospective, multicenter study, 843 patients were treated with donepezil, rivastigmine, or galantamine in a routine clinical setting. At baseline and every six months, patients were assessed using several rating scales, including the Mini-Mental State Examination (MMSE) and the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) and the dose of ChEI was recorded. Sociodemographic and clinical characteristics were investigated. The relationships of these predictors with longitudinal cognitive ability were analyzed using mixed-effects models.
Results
Slower long-term cognitive decline was associated with a higher cognitive ability at baseline or a lower level of education. The improvement in cognitive response after six months of ChEI therapy and a more positive longitudinal outcome were related to a higher mean dose of ChEI, nonsteroidal anti-inflammatory drug (NSAID)/acetylsalicylic acid usage, male gender, older age, and absence of the apolipoprotein E (APOE) ε4 allele. More severe cognitive impairment at baseline also predicted an improved response to ChEI treatment after six months. The type of ChEI agent did not influence the short-term response or the long-term outcome.
Conclusions
In this three-year AD study performed in a routine clinical practice, the response to ChEI treatment and longitudinal cognitive outcome were better in males, older individuals, non-carriers of the APOE ε4 allele, patients treated with NSAIDs/acetylsalicylic acid, and those receiving a higher dose of ChEI, regardless of the drug agent.
doi:10.1186/alzrt85
PMCID: PMC3226278  PMID: 21774798
5.  A Quick Test of cognitive speed is sensitive in detecting early treatment response in Alzheimer's disease 
Introduction
There is a great need for quick tests that identify treatment response in Alzheimer's disease (AD) to determine who benefits from the treatment. In this study, A Quick Test of cognitive speed (AQT) was compared with the mini-mental state examination (MMSE) in the evaluation of treatment outcome in AD.
Methods
75 patients with mild to moderate AD at a memory clinic were assessed with AQT and the MMSE at a pretreatment visit, at baseline and after 8 weeks of treatment with cholinesterase inhibitors (ChEI) initiated at baseline. Changes in the mean test scores before and after treatment were compared, as well as the number of treatment responders detected by each test, according to a reliable change index (RCI).
Results
After 8 weeks of treatment, the AQT improvement, expressed as a percentage, was significantly greater than that of the MMSE (P = 0.026). According to the RCI, the cut-offs to define a responder were ≥16 seconds improvement on AQT and ≥3 points on the MMSE after 8 weeks. With these cut-offs, both tests falsely classified ≤5% as responders during the pretreatment period. After 8 weeks of treatment, AQT detected significantly more responders than the MMSE (34% compared with 17%; P = 0.024). After 6 months of treatment, the 8-week AQT responders still showed a significantly better treatment response than the AQT nonresponders (22.3 seconds in mean difference; P < 0.001).
Conclusions
AQT detects twice as many treatment responders as the MMSE. It seems that AQT can, already after 8 weeks, identify the AD patients who will continue to benefit from ChEI treatment.
doi:10.1186/alzrt53
PMCID: PMC2983438  PMID: 20950460

Results 1-5 (5)