PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Amyloid imaging in clinical trials 
The possibility to map amyloid-beta, the Alzheimer’s disease hallmark protein, in vivo opens the application for amyloid imaging in clinical trials with disease-modifying agents. Monitoring change in amyloid burden, particularly when potential amyloid-lowering drugs are at play, requires accurate analytical methods. Studies to date have used suboptimal methods that do not account for heterogeneous changes in flow associated with disease progression and potentially with anti-amyloid drugs. In this commentary, we discuss practical and methodological issues regarding longitudinal amyloid imaging and propose several quantitative, yet feasible, alternatives for reliable assessment of changes over time in amyloid burden.
doi:10.1186/alzrt195
PMCID: PMC3978734  PMID: 23953396
2.  Amyloid imaging in prodromal Alzheimer's disease 
Patients with mild cognitive impairment are at an increased risk of progression to Alzheimer's disease. However, not all patients with mild cognitive impairment progress, and it is difficult to accurately identify those patients who are in the prodromal stage of Alzheimer's disease. In a recent paper, Koivunen and colleagues report that Pittsburgh compound-B, an amyloid-beta positron emission tomography ligand, predicts the progression of patients with mild cognitive impairment to Alzheimer's disease. Of 29 subjects with mild cognitive impairment, 21 (72%) had a positive Pittsburgh compound-B positron emission tomography baseline scan. In their study, 15 of these 21 (71%) patients progressed to Alzheimer's disease, whilst only 1 out of 8 (12.5%) Pittsburgh compound-B-negative patients with mild cognitive impairment did so. Moreover, in these mild cognitive impairment patients, the overall amyloid burden increased approximately 2.5% during the follow-up period. This is consistent with other longitudinal amyloid imaging studies that found a similar increase in amyloid deposition over time in patients with mild cognitive impairment. These studies together challenge current theories that propose a flattening of the increase of brain amyloid deposition already in the preclinical stage of Alzheimer's disease. These findings may have important implications for the design of future clinical trials aimed at preventing progression to Alzheimer's disease by lowering the brain amyloid-beta burden in patients with mild cognitive impairment.
doi:10.1186/alzrt88
PMCID: PMC3218803  PMID: 21936965
3.  Can novel therapeutics halt the amyloid cascade? 
The amyloid hypothesis provides a basis for the development of new therapeutic strategies in Alzheimer's disease. Two large trials have recently been published. The first is a phase 2 study of passive immunotherapy with bapineuzumab, a humanized anti-Aβ monoclonal antibody directed against the N-terminus of Aβ. This trial showed no differences within dose cohorts on the primary efficacy analysis. Exploratory analyses showed potential treatment differences on cognitive and functional endpoints in study completers and apolipoprotein E ε4 noncarriers. A safety concern was the occurrence of reversible vasogenic edema. The second study is a phase 3 trial of tarenflurbil, a modulator of the activity of γ-secretase. Tarenflurbil had no beneficial effect on the primary or secondary outcomes. The tarenflurbil group had a small increase in frequency of dizziness, anemia, and infections. Possible explanations for the negative results of these trials may be related to the study design or the choice of dosage. However, it may also be that these negative findings reflect our still incomplete understanding of, at least part of, the pathogenesis of Alzheimer's disease.
doi:10.1186/alzrt28
PMCID: PMC2876783  PMID: 20388189

Results 1-3 (3)