Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)
more »
Year of Publication
1.  Open questions for Alzheimer’s disease immunotherapy 
Perhaps more definitively than any other class of novel Alzheimer’s disease (AD) therapy, pre-clinical studies in mouse models of amyloid β (Aβ) deposition have established the disease-modifying potential of anti-Aβ immunotherapy. Despite disappointing results to date from anti-Aβ immunotherapy therapeutic trials, there is continued hope that such immunotherapies, especially if used in the preclinical stages, could prove to be the first disease-modifying therapies available for AD. The general optimism that Aβ-targeting and emerging tau-targeting immunotherapies may prove to be disease modifying is tempered by many unanswered questions regarding these therapeutic approaches, including but not limited to i) lack of precise understanding of mechanisms of action, ii) the factors that regulate antibody exposure in the brain, iii) the optimal target epitope, and iv) the mechanisms underlying side effects. In this review I discuss how answering these and other questions could increase the likelihood of therapeutic success. As passive immunotherapies are also likely to be extremely expensive, I also raise questions relating to cost-benefit of biologic-based therapies for AD that could limit future impact of these therapies by limiting access due to economic constraints.
PMCID: PMC4056616  PMID: 24393284
3.  Alzheimer's disease risk alleles in TREM2 illuminate innate immunity in Alzheimer's disease 
Genetic studies have provided the best evidence for cause and effect relationships in Alzheimer's disease (AD). Indeed, the identification of deterministic mutations in the APP, PSEN1 and PSEN2 genes and subsequent preclinical studies linking these mutations to alterations in Aβ production and aggregation have provided pivotal support for the amyloid cascade hypothesis. In addition, genetic, pathologic and biological studies of APOE have also indicated that the genetic risk for AD associated with APOE4 can be attributed, at least in part, to its pro-amyloidogenic effect on Aβ. In recent years a number of SNPs that show unequivocal genome-wide association with AD risk have implicated novel genetic loci as modifiers of AD risk. However, the functional implications of these genetic associations are largely unknown. For almost all of these associations, the functional variants have not been identified. Very recently, two large consortiums demonstrated that rare variants in the triggering receptor expressed on myeloid cells 2 (TREM2) gene confer significant risk for AD. TREM2 is a type 1 membrane receptor protein primarily expressed on microglia in the central nervous system that has been shown to regulate phagocytosis and activation of monocytes. Previously it had been shown that homozygous loss of function mutations in TREM2 cause polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL, Nasu Hakola disease) and also a pure form of early-onset dementia. The association of TREM2 variants with AD brings innate immune signaling into the light, affirming innate immunity's role as a significant factor in AD pathogenesis.
PMCID: PMC3706774  PMID: 23692967
4.  Biomarkers for Alzheimer's disease in plasma, serum and blood - conceptual and practical problems 
Substances produced throughout the body are detectable in the blood, which is the most common biological fluid used in clinical testing. Biomarkers for Alzheimer's disease (AD) have long been sought in the blood, but none has become an established or validated diagnostic test. Companion reviews in Alzheimer's Research & Therapy will review specific types of biomarkers or applications; in this overview, we cover key concepts related to AD blood biomarker studies in general. Reasons for the difficulty of detecting markers of a brain-specific disorder, such as AD, in the blood are outlined; these pose conceptual challenges for blood biomarker discovery and development. Applications of blood tests in AD go beyond screening and diagnostic testing; other potential uses are risk assessment, prognostication, and evaluation of treatment target engagement, toxicity, and outcome. Opportunities and questions that may surround these different uses are discussed. A systematic approach to biomarker discovery, detection, assay development and quality control, sample collection, handling and storage, and design and analysis of clinical studies needs to be implemented at every step of discovery and translation to identify an interpretable and useful biomarker.
PMCID: PMC3706797  PMID: 23470193
5.  Overlapping profiles of Aβ peptides in the Alzheimer's disease and pathological aging brains 
A hallmark of Alzheimer's disease (AD) is the presence of senile plaques composed of aggregated amyloid β (Aβ) peptides. Pathological aging (PA) is a postmortem classification that has been used to describe brains with plaque pathology similar in extent to AD, minimal cortical tau pathology, and no accompanying history of cognitive decline in the brain donor prior to death. PA may represent either a prodromal phase of AD, a benign form of Aβ accumulation, or inherent individual resistance to the toxic effects of Aβ accumulation. To attempt to distinguish between these possibilities we have systematically characterized Aβ peptides in a postmortem series of PA, AD and non-demented control (NDC) brains.
Aβ was sequentially extracted with tris buffered saline (TBS), radioimmunoprecipitation buffer (RIPA), 2% sodium dodecyl sulfate (SDS) and 70% formic acid (FA) from the pre-frontal cortex of 16 AD, eight PA, and six NDC patients. These extracts were analyzed by 1) a panel of Aβ sandwich ELISAs, 2) immunoprecipitation followed by mass spectrometry (IP/MS) and 3) western blotting. These studies enabled us to asses Aβ levels and solubility, peptide profiles and oligomeric assemblies.
In almost all extracts (TBS, RIPA, 2% SDS and 70% FA) the average levels of Aβ1-40, Aβ1-42, Aβ total, and Aβx-42 were greatest in AD. On average, levels were slightly lower in PA, and there was extensive overlap between Aβ levels in individual PA and AD cases. The profiles of Aβ peptides detected using IP/MS techniques also showed extensive similarity between the PA and AD brain extracts. In select AD brain extracts, we detected more amino-terminally truncated Aβ peptides compared to PA patients, but these peptides represented a minor portion of the Aβ observed. No consistent differences in the Aβ assemblies were observed by western blotting in the PA and AD groups.
We found extensive overlap with only subtle quantitative differences between Aβ levels, peptide profiles, solubility, and SDS-stable oligomeric assemblies in the PA and AD brains. These cross-sectional data indicate that Aβ accumulation in PA and AD is remarkably similar. Such data would be consistent with PA representing a prodromal stage of AD or a resistance to the toxic effects of Aβ.
PMCID: PMC3506932  PMID: 22621179
6.  Right sizing funding for Alzheimer's disease 
PMCID: PMC3226306  PMID: 21554753
7.  Proteinopathy-induced neuronal senescence: a hypothesis for brain failure in Alzheimer's and other neurodegenerative diseases 
Alzheimer's disease (AD) and a host of other neurodegenerative central nervous system (CNS) proteinopathies are characterized by the accumulation of misfolded protein aggregates. Simplistically, these aggregates can be divided into smaller, soluble, oligomeric and larger, less-soluble or insoluble, fibrillar forms. Perhaps the major ongoing debate in the neurodegenerative disease field is whether the smaller oligomeric or larger fibrillar aggregates are the primary neurotoxin. Herein, we propose an integrative hypothesis that provides new insights into how a variety of misfolded protein aggregates can result in neurodegeneration.
We introduce the concept that a wide range of highly stable misfolded protein aggregates in AD and other neurodegenerative proteinopathies are recognized as non-self and chronically activate the innate immune system. This pro-inflammatory state leads to physiological senescence of CNS cells. Once CNS cells undergo physiological senescence, they secrete a variety of pro-inflammatory molecules. Thus, the senescence of cells, which was initially triggered by inflammatory stimuli, becomes a self-reinforcing stimulus for further inflammation and senescence. Ultimately, senescent CNS cells become functionally impaired and eventually die, and this neurodegeneration leads to brain organ failure.
This integrative hypothesis, which we will refer to as the proteinopathy-induced senescent cell hypothesis of AD and other neurodegenerative diseases, links CNS proteinopathies to inflammation, physiological senescence, cellular dysfunction, and ultimately neurodegeneration. Future studies characterizing the senescent phenotype of CNS cells in AD and other neurodegenerative diseases will test the validity of this hypothesis. The implications of CNS senescence as a contributing factor to the neurodegenerative cascade and its implications for therapy are discussed.
PMCID: PMC2874257  PMID: 19822029

Results 1-7 (7)