PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  β-site amyloid precursor protein-cleaving enzyme 1(BACE1) inhibitor treatment induces Aβ5-X peptides through alternative amyloid precursor protein cleavage 
Introduction
The β-secretase enzyme, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), cleaves amyloid precursor protein (APP) in the first step in β-amyloid (Aβ) peptide production. Thus, BACE1 is a key target for candidate disease-modifying treatment of Alzheimer’s disease. In a previous exploratory Aβ biomarker study, we found that BACE1 inhibitor treatment resulted in decreased levels of Aβ1-34 together with increased Aβ5-40, suggesting that these Aβ species may be novel pharmacodynamic biomarkers in clinical trials. We have now examined whether the same holds true in humans.
Methods
In an investigator-blind, placebo-controlled and randomized study, healthy subjects (n =18) were randomly assigned to receive a single dose of 30 mg of LY2811376 (n =6), 90 mg of LY2811376 (n =6), or placebo (n =6). We used hybrid immunoaffinity-mass spectrometry (HI-MS) and enzyme-linked immunosorbent assays to monitor a variety of Aβ peptides.
Results
Here, we demonstrate dose-dependent changes in cerebrospinal fluid (CSF) Aβ1-34, Aβ5-40 and Aβ5-X after treatment with the BACE1-inhibitor LY2811376. Aβ5-40 and Aβ5-X increased dose-dependently, as reflected by two independent methods, while Aβ1-34 dose-dependently decreased.
Conclusion
Using HI-MS for the first time in a study where subjects have been treated with a BACE inhibitor, we confirm that CSF Aβ1-34 may be useful in clinical trials on BACE1 inhibitors to monitor target engagement. Since it is less hydrophobic than longer Aβ species, it is less susceptible to preanalytical confounding factors and may thus be a more stable marker. By independent measurement techniques, we also show that BACE1 inhibition in humans is associated with APP-processing into N-terminally truncated Aβ peptides via a BACE1-independent pathway.
Trial registration
ClinicalTrials.gov NCT00838084. Registered: First received: January 23, 2009, Last updated: July 14, 2009, Last verified: July 2009.
doi:10.1186/s13195-014-0075-0
PMCID: PMC4233234  PMID: 25404952
3.  A novel Aβ isoform pattern in CSF reflects γ-secretase inhibition in Alzheimer disease 
Introduction
LY450139 (semagacestat) inhibits γ-secretase, a key enzyme for generation of amyloid β (Aβ), the peptide deposited in plaques in Alzheimer disease (AD). Previous data have shown that LY450139 lowers plasma Aβ, but has no clear effect on Aβ1-40 or Aβ1-42 levels in cerebrospinal fluid (CSF). By using targeted proteomics techniques, we recently identified several shorter Aβ isoforms, such as Aβ1-16, that in experimental settings increase during γ-secretase inhibitor treatment, and thus may serve as sensitive biochemical indices of the treatment effect. Here, we test the hypothesis that these shorter Aβ isoforms may be biomarkers of γ-secretase inhibitor treatment in clinical trials.
Methods
In a phase II clinical trial, 35 individuals with mild to moderate AD were randomized to placebo (n = 10) or LY450139 (100 mg (n = 15) or 140 mg (n = 10)) and underwent lumbar puncture at baseline and after 14 weeks of treatment. The CSF Aβ isoform pattern was analyzed with immunoprecipitation combined with MALDI-TOF mass spectrometry.
Results
The CSF levels of Aβ1-14, Aβ1-15, and Aβ1-16 showed a dose-dependent increase by 57% and 74%, 21% and 35%, and 30% and 67%, respectively in the 100-mg and 140-mg treatment groups. Aβ1-40 and Aβ1-42 were unaffected by treatment.
Conclusions
CSF Aβ1-14, Aβ1-15, and Aβ1-16 increase during γ-secretase inhibitor treatment in AD, even at doses that do not affect Aβ1-42 or Aβ1-40, probably because of increased substrate availability of the C99 APP stub (APP β-CTF) induced by γ-secretase inhibition. These Aβ isoforms may be novel sensitive biomarkers to monitor the biochemical effect in clinical trials.
Trial registration
Clinical Trials.gov NCT00244322
doi:10.1186/alzrt30
PMCID: PMC2876785  PMID: 20350302

Results 1-3 (3)