PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (92)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  A controlled trial of Partners in Dementia Care: veteran outcomes after six and twelve months 
Introduction
“Partners in Dementia Care” (PDC) tested the effectiveness of a care-coordination program integrating healthcare and community services and supporting veterans with dementia and their caregivers. Delivered via partnerships between Veterans Affairs medical centers and Alzheimer’s Association chapters, PDC targeted both patients and caregivers, distinguishing it from many non-pharmacological interventions. Hypotheses posited PDC would improve five veteran self-reported outcomes: 1) unmet need, 2) embarrassment about memory problems, 3) isolation, 4) relationship strain and 5) depression. Greater impact was expected for more impaired veterans. A unique feature was self-reported research data collected from veterans with dementia.
Methods and Findings
Five matched communities were study sites. Two randomly selected sites received PDC for 12 months; comparison sites received usual care. Three structured telephone interviews were completed every 6 months with veterans who could participate.
Results
Of 508 consenting veterans, 333 (65.6%) completed baseline interviews. Among those who completed baseline interviews, 263 (79.0%) completed 6-month follow-ups and 194 (58.3%) completed 12-month follow-ups. Regression analyses showed PDC veterans had significantly less adverse outcomes than those receiving usual care, particularly for more impaired veterans after 6 months, including reduced relationship strain (B = −0.09; p = 0.05), depression (B = −0.10; p = 0.03), and unmet need (B = −0.28; p = 0.02; and B = −0.52; p = 0.08). PDC veterans also had less embarrassment about memory problems (B = −0.24; p = 0.08). At 12 months, more impaired veterans had further reductions in unmet need (B = −0.96; p < 0.01) and embarrassment (B = −0.05; p = 0.02). Limitations included use of matched comparison sites rather than within-site randomization and lack of consideration for variation within the PDC group in amounts and types of assistance provided.
Conclusions
Partnerships between community and health organizations have the potential to meet the dementia-related needs and improve the psychosocial functioning of persons with dementia.
Trial Registry
NCT00291161
doi:10.1186/alzrt242
PMCID: PMC3978714
2.  Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition 
Introduction
Tau pathology is associated with a number of age-related neurodegenerative disorders. Few treatments have been demonstrated to diminish the impact of tau pathology in mouse models and none are yet effective in humans. Histone deacetylase 6 (HDAC6) is an enzyme that removes acetyl groups from cytoplasmic proteins, rather than nuclear histones. Its substrates include tubulin, heat shock protein 90 and cortactin. Tubastatin A is a selective inhibitor of HDAC6. Modification of tau pathology by specific inhibition of HDAC6 presents a potential therapeutic approach in tauopathy.
Methods
We treated rTg4510 mouse models of tau deposition and non-transgenic mice with tubastatin (25 mg/kg) or saline (0.9%) from 5 to 7 months of age. Cognitive behavior analysis, histology and biochemical analysis were applied to access the effect of tubastatin on memory, tau pathology and neurodegeneration (hippocampal volume).
Results
We present data showing that tubastatin restored memory function in rTg4510 mice and reversed a hyperactivity phenotype. We further found that tubastatin reduced the levels of total tau, both histologically and by western analysis. Reduction in total tau levels was positively correlated with memory improvement in these mice. However, there was no impact on phosphorylated forms of tau, either by histology or western analysis, nor was there an impact on silver positive inclusions histologically.
Conclusion
Potential mechanisms by which HDAC6 inhibitors might benefit the rTg4510 mouse include stabilization of microtubules secondary to increased tubulin acetylation, increased degradation of tau secondary to increased acetylation of HSP90 or both. These data support the use of HDAC6 inhibitors as potential therapeutic agents against tau pathology.
doi:10.1186/alzrt241
PMCID: PMC3978441  PMID: 24576665
3.  Assessing THK523 selectivity for tau deposits in Alzheimer’s disease and non–Alzheimer’s disease tauopathies 
Introduction
The introduction of tau imaging agents such as 18F-THK523 offers new hope for the in vivo assessment of tau deposition in tauopathies such as Alzheimer’s disease (AD), where preliminary 18F-THK523-PET studies have demonstrated significantly higher cortical retention of 18F-THK523 in AD compared to age-matched healthy individuals. In addition to AD, tau imaging with PET may also be of value in assessing non-AD tauopathies, such as corticobasal degeneration (CBD), progressive supranuclear palsy (PSP) and Pick’s disease (PiD).
Methods
To further investigate the ability of THK523 to recognize tau lesions, we undertook immunohistochemical and fluorescence studies in serial brain sections taken from individuals with AD (n = 3), CBD (n = 2), PSP (n = 1), PiD (n = 2) and Parkinson’s disease (PD; n = 2). In addition to the neuropathological analysis, one PSP patient had undergone a 18F-THK523 PET scan 5 months before death.
Results
Although THK523 labelled tau-containing lesions such as neurofibrillary tangles and neuropil threads in the hippocampus and frontal regions of AD brains, it failed to label tau-containing lesions in non-AD tauopathies. Furthermore, though THK523 faintly labelled dense-cored amyloid-β plaques in the AD frontal cortex, it failed to label α-synuclein-containing Lewy bodies in PD brain sections.
Conclusion
The results of this study suggest that 18F-THK523 selectively binds to paired helical filament tau in AD brains but does not bind to tau lesions in non-AD tauopathies, or to α-synuclein in PD brains.
doi:10.1186/alzrt240
PMCID: PMC3979096  PMID: 24572336
5.  Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex – evidence from two transgenic mouse models 
Introduction
Previous work has demonstrated the efficacy of irradiating tissue with red to infrared light in mitigating cerebral pathology and degeneration in animal models of stroke, traumatic brain injury, parkinsonism and Alzheimer’s disease (AD). Using mouse models, we explored the neuroprotective effect of near infrared light (NIr) treatment, delivered at an age when substantial pathology is already present in the cerebral cortex.
Methods
We studied two mouse models with AD-related pathologies: the K369I tau transgenic model (K3), engineered to develop neurofibrillary tangles, and the APPswe/PSEN1dE9 transgenic model (APP/PS1), engineered to develop amyloid plaques. Mice were treated with NIr 20 times over a four-week period and histochemistry was used to quantify AD-related pathological hallmarks and other markers of cell damage in the neocortex and hippocampus.
Results
In the K3 mice, NIr treatment was associated with a reduction in hyperphosphorylated tau, neurofibrillary tangles and oxidative stress markers (4-hydroxynonenal and 8-hydroxy-2′-deoxyguanosine) to near wildtype levels in the neocortex and hippocampus, and with a restoration of expression of the mitochondrial marker cytochrome c oxidase in surviving neurons. In the APP/PS1 mice, NIr treatment was associated with a reduction in the size and number of amyloid-β plaques in the neocortex and hippocampus.
Conclusions
Our results, in two transgenic mouse models, suggest that NIr may have potential as an effective, minimally-invasive intervention for mitigating, and even reversing, progressive cerebral degenerations.
doi:10.1186/alzrt232
PMCID: PMC3978916  PMID: 24387311
6.  Rivastigmine in moderately severe-to-severe Alzheimer’s disease: Severe Impairment Battery factor analysis 
Introduction
The Severe Impairment Battery (SIB) is validated for assessing cognition in patients with severe dementia. The current analysis aimed to further investigate the cognitive efficacy of rivastigmine capsules, as assessed by SIB factor scores, in patients with moderately severe-to-severe Alzheimer’s disease (AD).
Methods
This was a retrospective analysis of a 26-week, multicenter, randomized, double-blind, placebo-controlled study of oral rivastigmine conducted in Spain. Previously reported outcome measures included the full SIB. Current analyses examined calculated scores and effect sizes for the change from baseline at Week 26 on: newly defined SIB subscales (derived by a factor analysis of the 40 SIB items, using the PROC FACTOR function (SAS)); previously defined memory, language and praxis subscales (derived by previous analysis of the nine SIB domains); and the individual SIB items. Treatment differences were assessed.
Results
SIB data were provided by 104 rivastigmine-treated patients and 106 patients receiving placebo (Intent-To-Treat Last Observation Carried Forward population). Significantly less decline was observed on the previously defined memory and language subscales, and the newly defined working memory/memory subscale in rivastigmine-treated patients (all P < 0.05 versus placebo). Calculation of effect sizes demonstrated numerically greater efficacy of rivastigmine versus placebo on each of the subscales, and a broad range of SIB items; greatest effect sizes were observed on SIB items assessing the current month (effect size = 0.30) and digit span series (effect size = 0.33).
Conclusions
These data suggest the observed efficacy of rivastigmine in moderately severe-to-severe AD is likely a cumulative effect across a range of tasks. Rivastigmine demonstrates broad cognitive efficacy in this patient population.
doi:10.1186/alzrt229
PMCID: PMC3978681  PMID: 24351447
7.  Modeling the course of Alzheimer's disease to improve clinical trials: symposium report 
In a symposium held at the Clinical Trials in Alzheimer's Disease conference in Monte Carlo, Monaco (29 to 31 October 2012) three different, not mutually exclusive approaches to improve and facilitate clinical trials with anti-dementia drugs were presented and discussed. All three approaches are summarized in this manuscript. Core suggestions are: stratification of trial participants at the outset of studies, using cognitive and disease-course characteristics available at baseline; creating new composite cognitive scores for optimizing responsiveness to decline in early and very early Alzheimer's disease; and replacing some of the conventional long-term placebo-controlled trials in advanced stages of drug development, using the placebo group simulation approach. Future efforts should focus on incorporating, where appropriate, the suggestions provided at the symposium into clinical trials now being planned.
doi:10.1186/alzrt183
PMCID: PMC3706927  PMID: 23767782
8.  Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood–brain barrier model 
Introduction
The amyloid-β42 (Aβ42) peptide plays a crucial role in the pathogenesis of Alzheimer’s disease (AD), the most common neurodegenerative disorder affecting the elderly. Over the past years, several approaches and compounds developed for the treatment of AD have failed in clinical studies, likely in part due to their low penetration of the blood–brain barrier (BBB). Since nanotechnology-based strategies offer new possibilities for the delivery of drugs to the brain, this technique is studied intensively for the treatment of AD and other neurological disorders.
Methods
The Aβ42 lowering drug flurbiprofen was embedded in polylactide (PLA) nanoparticles by emulsification-diffusion technique and their potential as drug carriers in an in vitro BBB model was examined. First, the cytotoxic potential of the PLA-flurbiprofen nanoparticles on endothelial cells and the cellular binding and uptake by endothelial cells was studied. Furthermore, the biological activity of the nanoparticulate flurbiprofen on γ-secretase modulation as well as its in vitro release was examined. Furthermore, the protein corona of the nanoparticles was studied as well as their ability to transport flurbiprofen across an in vitro BBB model.
Results
PLA-flurbiprofen nanoparticles were endocytosed by endothelial cells and neither affected the vitality nor barrier function of the endothelial cell monolayer. The exposure of the PLA-flurbiprofen nanoparticles to human plasma occurred in a rapid protein corona formation, resulting in their decoration with bioactive proteins, including apolipoprotein E. Furthermore, luminally administered PLA-flurbiprofen nanoparticles in contrast to free flurbiprofen were able to modulate γ-secretase activity by selectively decreasing Aβ42 levels in the abluminal compartment of the BBB model.
Conclusions
In this study, we were able to show that flurbiprofen can be transported by PLA nanoparticles across an in vitro BBB model and most importantly, the transported flurbiprofen modulated γ-secretase activity by selectively decreasing Aβ42 levels. These results demonstrate that the modification of drugs via embedding in nanoparticles is a promising tool to facilitate drug delivery to the brain, which enables future development for the treatment of neurodegenerative disorders like AD.
doi:10.1186/alzrt225
PMCID: PMC3978673  PMID: 24280275
9.  The S-Connect study: results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer’s disease 
Introduction
Souvenaid® containing Fortasyn® Connect is a medical food designed to support synapse synthesis in persons with Alzheimer’s disease (AD). Fortasyn Connect includes precursors (uridine monophosphate; choline; phospholipids; eicosapentaenoic acid; docosahexaenoic acid) and cofactors (vitamins E, C, B12, and B6; folic acid; selenium) for the formation of neuronal membranes. Whether Souvenaid slows cognitive decline in treated persons with mild-to-moderate AD has not been addressed.
Methods
In a 24-week, double-masked clinical trial at 48 clinical centers, 527 participants taking AD medications [52% women, mean age 76.7 years (Standard Deviation, SD = 8.2), and mean Mini-Mental State Examination score 19.5 (SD = 3.1, range 14–24)] were randomized 1:1 to daily, 125-mL (125 kcal), oral intake of the active product (Souvenaid) or an iso-caloric control. The primary outcome of cognition was assessed by the 11-item Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog). Compliance was calculated from daily diary recordings of product intake. Statistical analyses were performed using mixed models for repeated measures.
Results
Cognitive performance as assessed by ADAS-cog showed decline over time in both control and active study groups, with no significant difference between study groups (difference =0.37 points, Standard Error, SE = 0.57, p = 0.513). No group differences in adverse event rates were found and no clinically relevant differences in blood safety parameters were noted. Overall compliance was high (94.1% [active] and 94.5% [control]), which was confirmed by significant changes in blood (nutritional) biomarkers.
Conclusions
Add-on intake of Souvenaid during 24 weeks did not slow cognitive decline in persons treated for mild-to-moderate AD. Souvenaid was well tolerated in combination with standard care AD medications.
Trial registration
Dutch Trial Register number: NTR1683.
doi:10.1186/alzrt224
PMCID: PMC3978853  PMID: 24280255
10.  Separation of cognitive domains to improve prediction of progression from mild cognitive impairment to Alzheimer's disease 
Addressing causes of heterogeneity in cognitive outcomes is becoming more critical as Alzheimer's disease (AD) research focuses on earlier disease. One of the causes of this heterogeneity may be that individuals with deficiencies in different cognitive domains may perform similarly on a neuropsychological (NP) test for very different reasons. Tatsuoka and colleagues have applied a Bayesian model in order to integrate knowledge about cognitive domains relevant to each NP test with the observed outcomes from the Alzheimer's Disease Neuroimaging Initiative (ADNI) mild cognitive impairment data. This approach resulted in better prediction of AD diagnosis than more traditional approaches.
doi:10.1186/alzrt176
PMCID: PMC3707047  PMID: 23680123
11.  Calmodulin levels in blood cells as a potential biomarker of Alzheimer’s disease 
Introduction
The clinical features of Alzheimer’s disease (AD) overlap with a number of other dementias and conclusive diagnosis is only achieved at autopsy. Accurate in-life diagnosis requires finding biomarkers suitable for early diagnosis, as well as for discrimination from other types of dementia. Mounting evidence suggests that AD-dependent processes may also affect peripheral cells. We previously reported that calmodulin (CaM) signaling is impaired in AD lymphoblasts. Here, we address the issue as to whether the assessment of CaM levels in peripheral cells could serve as a diagnostic biomarker.
Methods
A total of 165 subjects were enrolled in the study, including 56 AD patients, 15 patients with mild cognitive impairment, 7 with frontotemporal dementia associated with progranulin mutations, 4 with dementia with Lewy bodies, 20 patients with Parkinson’s disease, 10 with amyotrophic lateral sclerosis, 5 with progressive supranuclear palsy, and 48 cognitively normal individuals. CaM levels were then analyzed in lymphoblasts, peripheral blood mononuclear cells and plasma. Receiver operating characteristic (ROC) curve analyses were employed to evaluate the diagnostic performance of CaM content in identifying AD patients.
Results
Compared with control individuals, CaM levels were significantly increased in AD cells, but not in the other neurodegenerative disorders. CaM levels differentiated AD from control with a sensitivity of 0.89 and a specificity of 0.82 and were not dependent on disease severity or age. MCI patients also showed higher levels of the protein.
Conclusions
CaM levels could be considered a peripheral biomarker for AD in its early stage and help to discriminate from other types of dementia.
doi:10.1186/alzrt219
PMCID: PMC3978675  PMID: 24499616
12.  Predictors of decline in walking ability in community-dwelling Alzheimer’s disease patients: Results from the 4-years prospective REAL.FR study 
Introduction
The aim of this study was to explore the predictors of decline in walking ability in patients with Alzheimer’s disease (AD).
Methods
The prospective REseau surla maladie ALzheimer FRançais (REAL.FR) study enrolled six hundred eighty four community-dwelling AD subjects (71.20% women; mean age 77.84 Standard Deviation, SD, 6.82 years, Mini-Mental State Examination 20.02, SD 4.23). Decline in walking ability was defined as the first loss of 0.5 points or more in the walking ability item of the Activities of Daily Living scale (ADL), where higher score means greater independence, during the four-years of follow-up. Demographic characteristics, co-morbidities, and level of education were reported at baseline. Disability, caregiver burden, cognitive and nutritional status, body mass index, balance, behavioral and psychological symptoms of dementia, medication, hospitalization, institutionalization and death were reported every six months during the four years. Cox survival analyses were performed to assess the independent factors associated with decline in walking ability.
Results
The mean incident decline in walking ability was 12.76% per year (95% Confidence Interval (CI) 10.86 to 14.66). After adjustment for confounders, the risk of decline in walking ability was independently associated with older age (Relative Risk, RR = 1.05 (95% CI 1.02 to 1.08)), time from diagnosis of dementia (RR = 1.16 (1.01 to 1.33)), painful osteoarthritis (RR = 1.84 (1.19 to 2.85)), hospitalization for fracture of the lower limb (RR = 6.35 (3.02 to 13.37)), higher baseline ADL score (RR = 0.49 (0.43 to 0.56)), and the use of acetylcholinesterase inhibitors (RR = 0.52 (0.28 to 0.96)).
Conclusions
The risk of decline in walking ability is predicted by older age, increased dementia severity, poor functional score, and orthopedic factors and seems to be prevented by the use of acetylcholinesterase inhibitors medication.
doi:10.1186/alzrt216
PMCID: PMC3978928  PMID: 24517197
13.  Neuroprotective effects of donepezil against cholinergic depletion 
Introduction
Intraparenchymal injections of the immunotoxin 192-IgG-saporin into medial septum and nucleus basalis magnocellularis causes a selective depletion of basal forebrain cholinergic neurons. Thus, it represents a valid model to mimic a key component of the cognitive deficits associated with aging and dementia. Here we administered donepezil, a potent acetylcholinesterase inhibitor developed for treating Alzheimer’s disease, 15 days before 192-IgG-saporin injection, and thus we examined donepezil effects on neurodegeneration and cognitive deficits.
Methods
Caspase-3 activity and cognitive performances of lesioned rats pre-treated with donepezil or saline were analyzed and compared to the outcomes obtained in pre-treated sham-lesioned rats.
Results
Cholinergic depletion increased hippocampal and neocortical caspase-3 activity and impaired working memory, spatial discrimination, social novelty preference, and ultrasonic vocalizations, without affecting anxiety levels and fear conditioning. In lesioned animals, donepezil pre-treatment reduced hippocampal and neocortical caspase-3 activity and improved working memory and spatial discrimination performances and partially rescued ultrasonic vocalizations, without preventing social novelty alterations.
Conclusions
Present data indicate that donepezil pre-treatment exerts beneficial effects on behavioral deficits induced by cholinergic depletion, attenuating the concomitant hippocampal and neocortical neurodegeneration.
doi:10.1186/alzrt215
PMCID: PMC3978431  PMID: 24401551
14.  Cerebrospinal fluid biomarkers for Alzheimer disease and subcortical axonal damage in 5,542 clinical samples 
Introduction
The neuronal loss in Alzheimer disease (AD) has been described to affect grey matter in the cerebral cortex. However, in the elderly, AD pathology is likely to occur together with subcortical axonal degeneration on the basis of cerebrovascular disease. Therefore, we hypothesized that biomarkers for AD and subcortical axonal degeneration would correlate in patients undergoing testing for dementia biomarkers, particularly in older age groups.
Methods
We performed correlation and cluster analyses of cerebrospinal fluid (CSF) biomarker data from 5,542 CSF samples analyzed in our routine clinical neurochemistry laboratory in 2010 through 2012 for the established CSF AD biomarkers total tau (T-tau), phosphorylated-tau (P-tau), amyloid β1-42 (Aβ42), and for neurofilament light (NFL), which is a protein expressed in large-caliber myelinated axons, the CSF levels of which correlate with subcortical axonal injury.
Results
Aβ42, T-tau, and P-tau correlated with NFL. By cluster analysis, we found a bimodal data distribution in which a group with a low Aβ42/P-tau ratio (suggesting AD pathology) had high levels of NFL. High levels of NFL also correlated with the presence of an AD biomarker pattern defined by Aβ42/P-tau and T-tau. Only 29% of those with an AD biomarker signature had normal NFL levels. Age was a possible confounding factor for the associations between NFL and established AD biomarkers, but in a logistic regression analysis, both age and NFL independently predicted the AD biomarker pattern.
Conclusions
The association between an AD-like signature using the established biomarkers Aβ42, T-tau, and P-tau with increased levels of NFL provides in vivo evidence of an association between AD and subcortical axonal degeneration in this uniquely large dataset of CSF samples tested for dementia biomarkers.
doi:10.1186/alzrt212
PMCID: PMC3978733  PMID: 24479774
16.  Would you want to know? Public attitudes on early diagnostic testing for Alzheimer's disease 
Introduction
Research is underway to develop an early medical test for Alzheimer's disease (AD).
Methods
To evaluate potential demand for such a test, we conducted a cross-sectional telephone survey of 2,678 randomly selected adults across the United States and four European countries.
Results
Most surveyed adults (67%) reported that they are "somewhat" or "very likely" to get an early medical test if one becomes available in the future. Interest was higher among those worried about developing AD, those with an immediate blood relative with AD, and those who have served as caregivers for AD patients. Older respondents and those living in Spain and Poland also exhibited greater interest in testing. Knowing AD is a fatal condition did not influence demand for testing, except among those with an immediate blood relative with the disease.
Conclusions
Potential demand for early medical testing for AD could be high. A predictive test could not only advance medical research, it could transform political and legal landscapes by creating a large constituency of asymptomatic, diagnosed adults.
doi:10.1186/alzrt206
PMCID: PMC3978817  PMID: 24010759
Alzheimer's disease; medical testing; predictive testing; medical decision-making; public attitudes; preclinical
17.  Amyloid imaging in clinical trials 
The possibility to map amyloid-beta, the Alzheimer’s disease hallmark protein, in vivo opens the application for amyloid imaging in clinical trials with disease-modifying agents. Monitoring change in amyloid burden, particularly when potential amyloid-lowering drugs are at play, requires accurate analytical methods. Studies to date have used suboptimal methods that do not account for heterogeneous changes in flow associated with disease progression and potentially with anti-amyloid drugs. In this commentary, we discuss practical and methodological issues regarding longitudinal amyloid imaging and propose several quantitative, yet feasible, alternatives for reliable assessment of changes over time in amyloid burden.
doi:10.1186/alzrt195
PMCID: PMC3978734  PMID: 23953396
18.  Assessment of psychiatric changes in C9ORF72 frontotemporal dementia 
Recent neuroimaging evidence highlights cerebellar atrophy as one feature of frontotemporal dementia (FTD) with C9ORF72 mutation. Interestingly, C9ORF72 patients do not present with classic cerebellar symptoms, such as ataxia, but have instead a higher incidence of psychiatric changes compared to sporadic FTD. To date there exists no objective tool to assess such psychiatric changes due to cerebellar dysfunction. In the previous edition of Alzheimer's Research & Therapy, Downey and colleagues present a novel task, including a new apparatus, that targets such psychiatric disturbances. In the task participants are required to make self-other attributions, which have been shown to be dependent on the cerebellum in functional neuroimaging in healthy subjects. The data Downey and colleagues present on a case of C9ORF72 compared to four age-matched controls reveal that the patient shows impaired judgement only for other induced actions. These findings highlight the sensitivity of such a simple task to tap into potential cerebellar dysfunction in C9ORF72. Future studies are needed to now to determine whether this task is mediated solely via the cerebellum and is disease specific to C9ORF72. Nevertheless, this study is an important first step in the development of cerebellar-specific tasks tapping into psychiatric dysfunction, which will inform future diagnosis and disease management of patients with cerebellar dysfunction, and in particular C9ORF72.
doi:10.1186/alzrt152
PMCID: PMC3580458  PMID: 23269019
19.  Comprehensive behavioral characterization of an APP/PS-1 double knock-in mouse model of Alzheimer's disease 
Introduction
Despite the extensive mechanistic and pathological characterization of the amyloid precursor protein (APP)/presenilin-1 (PS-1) knock-in mouse model of Alzheimer's disease (AD), very little is known about the AD-relevant behavioral deficits in this model. Characterization of the baseline behavioral performance in a variety of functional tasks and identification of the temporal onset of behavioral impairments are important to provide a foundation for future preclinical testing of AD therapeutics. Here we perform a comprehensive behavioral characterization of this model, discuss how the observed behavior correlates with the mechanistic and pathological observations of others, and compare this model with other commonly used AD mouse models.
Methods
Four different groups of mice ranging across the lifespan of this model (test groups: 7, 11, 15, and 24 months old) were run in a behavioral test battery consisting of tasks to assess motor function (grip strength, rotor rod, beam walk, open field ambulatory movement), anxiety-related behavior (open field time spent in peripheral zone vs. center zone, elevated plus maze), and cognitive function (novel object recognition, radial arm water maze).
Results
There were no differences in motor function or anxiety-related behavior between APP/PS-1 knock-in mice and wild-type counterpart mice for any age group. Cognitive deficits in both recognition memory (novel object recognition) and spatial reference memory (radial arm water maze) became apparent for the knock-in animals as the disease progressed.
Conclusion
This is the first reported comprehensive behavioral analysis of the APP/PS1 knock-in mouse model of AD. The lack of motor/coordination deficits or abnormal anxiety levels, coupled with the age/disease-related cognitive decline and high physiological relevance of this model, make it well suited for utilization in preclinical testing of AD-relevant therapeutics.
doi:10.1186/alzrt182
PMCID: PMC3706792  PMID: 23705774
Alzheimer's disease; amyloid precursor protein/presenilin-1; motor behavior; anxiety behavior; cognition; learning and memory; spatial reference memory; recognition memory; transgenic mouse model
20.  The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer's disease mice 
Introduction
Despite years of research, there are no disease-modifying drugs for Alzheimer's disease (AD), a fatal, age-related neurodegenerative disorder. Screening for potential therapeutics in rodent models of AD has generally relied on testing compounds before pathology is present, thereby modeling disease prevention rather than disease modification. Furthermore, this approach to screening does not reflect the clinical presentation of AD patients which could explain the failure to translate compounds identified as beneficial in animal models to disease modifying compounds in clinical trials. Clearly a better approach to pre-clinical drug screening for AD is required.
Methods
To more accurately reflect the clinical setting, we used an alternative screening strategy involving the treatment of AD mice at a stage in the disease when pathology is already advanced. Aged (20-month-old) transgenic AD mice (APP/swePS1ΔE9) were fed an exceptionally potent, orally active, memory enhancing and neurotrophic molecule called J147. Cognitive behavioral assays, histology, ELISA and Western blotting were used to assay the effect of J147 on memory, amyloid metabolism and neuroprotective pathways. J147 was also investigated in a scopolamine-induced model of memory impairment in C57Bl/6J mice and compared to donepezil. Details on the pharmacology and safety of J147 are also included.
Results
Data presented here demonstrate that J147 has the ability to rescue cognitive deficits when administered at a late stage in the disease. The ability of J147 to improve memory in aged AD mice is correlated with its induction of the neurotrophic factors NGF (nerve growth factor) and BDNF (brain derived neurotrophic factor) as well as several BDNF-responsive proteins which are important for learning and memory. The comparison between J147 and donepezil in the scopolamine model showed that while both compounds were comparable at rescuing short term memory, J147 was superior at rescuing spatial memory and a combination of the two worked best for contextual and cued memory.
Conclusion
J147 is an exciting new compound that is extremely potent, safe in animal studies and orally active. J147 is a potential AD therapeutic due to its ability to provide immediate cognition benefits, and it also has the potential to halt and perhaps reverse disease progression in symptomatic animals as demonstrated in these studies.
doi:10.1186/alzrt179
PMCID: PMC3706879  PMID: 23673233
21.  Neuroprotective effects of D-Ala2GIP on Alzheimer's disease biomarkers in an APP/PS1 mouse model 
Introduction
Type 2 diabetes mellitus has been identified as a risk factor for Alzheimer's disease (AD). An impairment of insulin signaling as well as a desensitization of its receptor has been found in AD brains. Glucose-dependent insulinotropic polypeptide (GIP) normalises insulin signaling by facilitating insulin release. GIP directly modulates neurotransmitter release, LTP formation, and protects synapses from the detrimental effects of beta-amyloid fragments on LTP formation, and cell proliferation of progenitor cells in the dentate gyrus. Here we investigate the potential therapeutic property of the new long lasting incretin hormone analogue D-Ala2GIP on key symptoms found in a mouse model of Alzheimer' disease (APPswe/PS1detaE9).
Methods
D-Ala2GIP was injected for 21 days at 25 nmol/kg ip once daily in APP/PS1 male mice and wild type (WT) littermates aged 6 or 12 months of age. Amyloid plaque load, inflammation biomarkers, synaptic plasticity in the brain (LTP), and memory were measured.
Results
D-Ala2GIP improved memory in WT mice and rescued the cognitive decline of 12 months old APP/PS1 mice in two different memory tasks. Furthermore, deterioration of synaptic function in the dentate gyrus and cortex was prevented in 12 months old APP/PS1 mice. D-Ala2GIP facilitated synaptic plasticity in APP/PS1 and WT mice and reduced the number of amyloid plaques in the cortex of D-Ala2GIP injected APP/PS1 mice. The inflammatory response in microglia was also reduced.
Conclusion
The results demonstrate that D-Ala2GIP has neuroprotective properties on key hallmarks found in AD. This finding shows that novel GIP analogues have the potential as a novel therapeutic for AD.
doi:10.1186/alzrt174
PMCID: PMC3706793  PMID: 23601582
22.  Efficacy of SPI-1865, a novel gamma-secretase modulator, in multiple rodent models 
Introduction
Modulation of the gamma-secretase enzyme, which reduces the production of the amyloidogenic Aβ42 peptide while sparing the production of other Aβ species, is a promising therapeutic approach for the treatment of Alzheimer's disease. Satori has identified a unique class of small molecule gamma-secretase modulators (GSMs) capable of decreasing Aβ42 levels in cellular and rodent model systems. The compound class exhibits potency in the nM range in vitro and is selective for lowering Aβ42 and Aβ38 while sparing Aβ40 and total Aβ levels. In vivo, a compound from the series, SPI-1865, demonstrates similar pharmacology in wild-type CD1 mice, Tg2576 mice and Sprague Dawley rats.
Methods
Animals were orally administered either a single dose of SPI-1865 or dosed for multiple days. Aβ levels were measured using a sensitive plate-based ELISA system (MSD) and brain and plasma exposure of drug were assessed by LC/MS/MS.
Results
In wild-type mice using either dosing regimen, brain Aβ42 and Aβ38 levels were decreased upon treatment with SPI-1865 and little to no statistically meaningful effect on Aβ40 was observed, reflecting the changes observed in vitro. In rats, brain Aβ levels were examined and similar to the mouse studies, brain Aβ42 and Aβ38 were lowered. Comparable changes were also observed in the Tg2576 mice, where Aβ levels were measured in brain as well as plasma and CSF.
Conclusions
Taken together, these data indicate that SPI-1865 is orally bioavailable, brain penetrant, and effective at lowering Aβ42 in a dose responsive manner. With this unique profile, the class of compounds represented by SPI-1865 may be a promising new therapy for Alzheimer's disease.
doi:10.1186/alzrt173
PMCID: PMC3707052  PMID: 23597079
23.  The effect of cyclodextrin-solubilized curcuminoids on amyloid plaques in Alzheimer transgenic mice: brain uptake and metabolism after intravenous and subcutaneous injection 
Introduction
Curcuminoids may improve pathological conditions associated with Alzheimer's disease. However, their therapeutic potential is limited by their exceedingly low bioavailability after oral administration. A method to deliver solubilized curcuminoids by injection was evaluated in Alzheimer transgenic mice.
Methods
Amyloid protein precursor (APP)SWE, PS1dE9 mice were intravenously or subcutaneously injected at weekly intervals between the ages of 4 and 12 months with serum- or cyclodextrin-solubilized curcuminoids to assess their potential for plaque prevention. Alternatively, mice between the ages of 11 and 12 months were intravenously injected with cyclodextrin-solubilized curcuminoids at biweekly intervals to evaluate their ability to eliminate existing plaques. Plasma and brain levels of curcuminoids and their metabolites were also determined after subcutaneous and intravenous injection.
Results
Weekly long-term injections did not result in a significant plaque load reduction. However, intravenous injection of cyclodextrin-solubilized curcuminoids at higher curcuminoid concentrations and at a biweekly frequency between the ages of 11 and 12 months reduced the plaque load to approximately 70% of the control value. After intravenous injection, plasma levels of 100 μM curcuminoids and brain levels of 47 nmol/g could initially be achieved that declined to essentially undetectable levels within 20 minutes. The primary curcuminoid metabolites in plasma were the conjugates of glucuronide or sulfate and hexahydrocurcuminoids as reduction products. In the brain, both hexahydrocurcuminoids and octahydrocurcuminoids were detected as major metabolites. After subcutaneous injection, maximal curcuminoid plasma levels of 23 μM and brain levels of 8 nmol/g were observed at 30 minutes after injection and curcuminoids remained detectable for 2 to 3 h.
Conclusion
Curcuminoids are rapidly metabolized after injection and their effect on reducing plaque load associated with Alzheimer's disease may be dependent on the frequency of administration.
doi:10.1186/alzrt170
PMCID: PMC3706801  PMID: 23537472
24.  C9orf72 immunohistochemistry in Alzheimer's disease 
Mutation in chromosome 9 open reading frame 72 (C9orf72) is a major genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), referred to as C9FTD/ALS. The function of the protein is currently unknown, and the pathomechanism of C9FTD/ALS remains to be elucidated. The study by Satoh and colleagues in the previous issue of Alzheimer's Research & Therapy presents important new findings on C9orf72 protein expression in neurodegenerative disorders along with characterization of C9orf72 antibodies.
doi:10.1186/alzrt140
PMCID: PMC3580394  PMID: 23014271
25.  Dementia: a global health priority - highlights from an ADI and World Health Organization report 
Alzheimer's Disease International is the worldwide federation of Alzheimer associations that represent people with dementia and their families. Alzheimer's Disease International has commissioned a number of World Alzheimer Reports since 2009 and was involved in the recently launched report Dementia: A Public Health Priority by the World Health Organization. From these reports, we can learn about the growing impact of Alzheimer's disease and other dementias on our societies and the need to take action. Developing national Alzheimer plans is a key tool for this action.
doi:10.1186/alzrt143
PMCID: PMC3580397  PMID: 22995353

Results 1-25 (92)