PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Neuron-Microglia Dialogue and Hippocampal Neurogenesis in the Aged Brain 
Aging and disease  2010;1(3):232-244.
Age-related changes in innate immune function and glial-neuronal communication are early and critical events in brain aging and neurodegenerative disease, and lead to a chronic increase in oxidative stress and inflammation, which initiates neuronal dysfunction and reduced synaptic plasticity, and ultimately disruption in learning and memory in the aged brain. Several lines of evidence suggest a correlation between adult neurogenesis and learning. It has been proposed that a decline in hippocampal neurogenesis contributes to a physiologic decline in brain function. Recently, new and important insights relating to the production of new neurons affecting hippocampal-dependent memory ability have been provided. A multitude of factors have been shown to regulate the production of new neurons in the adult hippocampus, many of which change as a result of aging. Yet, the potential importance of neurogenesis in some affective and cognitive behaviors, as well as endogenous tissue repair mechanisms, makes further investigation of neurogenic regulators warranted. We have recent evidence that key regulators of communication between neurons and microglia are disrupted in the aged brain and may be one of the factors that precedes and initiates the observed increase in chronic inflammatory state. In this review the role of dysfunction in these neuronal-glial communication regulators underlying age-related impairments in cognition and hippocampal neurogenesis will be discussed. An understanding of these mechanisms will lead to the development of preventive or protective therapies.
PMCID: PMC3180926  PMID: 21961084
Neurogenesis; aged brain; hippocampus; neuron; microglia
2.  Role of TNFα Induced Inflammation in Delay Eyeblink Conditioning in Young and Aged Rats 
Aging and disease  2010;1(3):191-198.
Tumor necrosis factor alpha (TNF-α) is a multifunctional proinflammatory cytokine, which is a critical inflammatory mediator involved in aging and neurodegenerative diseases of aging. Previous work has shown that diets enriched with antioxidants reduce levels of the cytokine TNF-α and improve classical eyeblink conditioning performance. Therefore we tested the hypothesis that the proinflamatory cytokine TNF-α may be a critical factor that modulates classical conditioning behavior. If increased levels of endogenous cerebellar TNF-α negatively affect performance on the eyeblink conditioning task in aged rats, then exogenous administration of TNF-α in young rats should result in an impaired acquisition and/or retention of eyeblink conditioning memory. On the other hand, the reduction or blockage of the age-related increase in cerebellar TNF-α levels in aged rats should result in an improvement in memory. Young (3 month old) F344 rats were pretreated with an intracerebellar injection of recombinant rat (rr)TNF-α or denatured (rr)TNF-α prior to eyeblink conditioning coupled to microdialysis. The results showed that young rats treated with rrTNF-α have a decreased rate of learning compared to the control group. Norepinephrine which has been shown to play a critical role in cerebellar learning tasks presented a shift on training day one of young rats resembling that observed in aged rats. In a second experiment aged (22 month old) F344 rats were pretreated with intracerebellar microinjection of anti-rat TNF-α three times a week for 4 weeks prior to eyeblink conditioning training couple to microdialysis. Aged rats showed a better performance in the conditioned responses when compared to controls. The release of norepinephrine in this group reached basal levels sooner than the control group but not as early as the young rats. The results of these experiments demonstrate a critical correlation between TNF-α and the rate of learning and the pattern of NE release during eyeblink conditioning.
PMCID: PMC3095107  PMID: 21593991
Learning; cytokines; memory; consolidation; aging; microglia
3.  Neuroimmunomodulation and Aging 
Aging and disease  2010;1(3):169-172.
Inflammation is by definition a protective phase of the immune response. The very first goal of inflammation is destroying and phagocytosing infected or damaged cells to avoid the spread of the pathogen or of the damage to neighboring, healthy, cells. However, we now know that during many chronic neurological disorders, inflammation and degeneration always coexist at certain time points. For example, inflammation comes first in multiple sclerosis, but degeneration follows, while in Alzheimer's or Parkinson's disease degeneration starts and inflammation is secondary. Either way these are the two pathological detectable problems. The central nervous system (CNS) has long been viewed as exempt from the effects of the immune system. The brain has physical barriers for protection, and it is now clear that cells in the nervous system respond to inflammation and injury in unique ways. In recent years, researchers have presented evidence supporting the idea that in the CNS there is an ongoing protective inflammatory mechanism, which involves macrophage, monocytes, T cells, regulatory T-cells, effector T cells and many others; these, in turn, promote repair mechanisms in the brain not only during inflammatory, and degenerative disorders but also in healthy people. This “repair mechanism” can be considered as an intrinsic part of the physiological activities of the brain. It is now well known that the microenvironment of the brain is a crucial player in determining the relative contribution of the two different outcomes. Failure of molecular and cellular mechanisms sustaining the “brain-repair programme” might be, at least in part, a cause of neurological disorders. Today, the neurotoxic and neuroprotective roles of the innate immune reactions in aging, brain injury, ischemia, autoimmune and neurodegenerative disorders of the CNS are widely investigated and highly debated research topics. Nevertheless, several issues remain to be elucidated, notably the earlier cellular events that initiate dysregulation of brain inflammatory pathways. If these inflammatory processes could be identified and harnessed, then cognitive function may be protected during aging and age-related neurodegenerative diseases through early interventions directed against the negative consequences of inflammation. This commentary highlights the major issues/opinions presented by experts on the involvement of the brain immune system in aging and age-related diseases in a special edition of the journal Aging and Disease.
PMCID: PMC3033048  PMID: 21297896
Aging; Neuroinflammation; Immune system; Brain
4.  Neuroimmunomodulation and Aging 
Aging and Disease  2010;1(3):169-172.
Inflammation is by definition a protective phase of the immune response. The very first goal of inflammation is destroying and phagocytosing infected or damaged cells to avoid the spread of the pathogen or of the damage to neighboring, healthy, cells. However, we now know that during many chronic neurological disorders, inflammation and degeneration always coexist at certain time points. For example, inflammation comes first in multiple sclerosis, but degeneration follows, while in Alzheimer’s or Parkinson’s disease degeneration starts and inflammation is secondary. Either way these are the two pathological detectable problems. The central nervous system (CNS) has long been viewed as exempt from the effects of the immune system. The brain has physical barriers for protection, and it is now clear that cells in the nervous system respond to inflammation and injury in unique ways. In recent years, researchers have presented evidence supporting the idea that in the CNS there is an ongoing protective inflammatory mechanism, which involves macrophage, monocytes, T cells, regulatory T-cells, effector T cells and many others; these, in turn, promote repair mechanisms in the brain not only during inflammatory, and degenerative disorders but also in healthy people. This “repair mechanism” can be considered as an intrinsic part of the physiological activities of the brain. It is now well known that the microenvironment of the brain is a crucial player in determining the relative contribution of the two different outcomes. Failure of molecular and cellular mechanisms sustaining the “brain-repair programme” might be, at least in part, a cause of neurological disorders. Today, the neurotoxic and neuroprotective roles of the innate immune reactions in aging, brain injury, ischemia, autoimmune and neurodegenerative disorders of the CNS are widely investigated and highly debated research topics. Nevertheless, several issues remain to be elucidated, notably the earlier cellular events that initiate dysregulation of brain inflammatory pathways. If these inflammatory processes could be identified and harnessed, then cognitive function may be protected during aging and age-related neurodegenerative diseases through early interventions directed against the negative consequences of inflammation. This commentary highlights the major issues/opinions presented by experts on the involvement of the brain immune system in aging and age-related diseases in a special edition of the journal Aging and Disease.
PMCID: PMC3033048  PMID: 21297896
Aging; Neuroinflammation; Immune system; Brain
5.  Role of TNFα Induced Inflammation in Delay Eyeblink Conditioning in Young and Aged Rats 
Aging and Disease  2010;1(3):191-198.
Tumor necrosis factor alpha (TNF-α) is a multifunctional proinflammatory cytokine, which is a critical inflammatory mediator involved in aging and neurodegenerative diseases of aging. Previous work has shown that diets enriched with antioxidants reduce levels of the cytokine TNF-α and improve classical eyeblink conditioning performance. Therefore we tested the hypothesis that the proinflamatory cytokine TNF-α may be a critical factor that modulates classical conditioning behavior. If increased levels of endogenous cerebellar TNF-α negatively affect performance on the eyeblink conditioning task in aged rats, then exogenous administration of TNF-α in young rats should result in an impaired acquisition and/or retention of eyeblink conditioning memory. On the other hand, the reduction or blockage of the age-related increase in cerebellar TNF-α levels in aged rats should result in an improvement in memory. Young (3 month old) F344 rats were pretreated with an intracerebellar injection of recombinant rat (rr)TNF-α or denatured (rr)TNF-α prior to eyeblink conditioning coupled to microdialysis. The results showed that young rats treated with rrTNF-α have a decreased rate of learning compared to the control group. Norepinephrine which has been shown to play a critical role in cerebellar learning tasks presented a shift on training day one of young rats resembling that observed in aged rats. In a second experiment aged (22 month old) F344 rats were pretreated with intracerebellar microinjection of anti-rat TNF-α three times a week for 4 weeks prior to eyeblink conditioning training couple to microdialysis. Aged rats showed a better performance in the conditioned responses when compared to controls. The release of norepinephrine in this group reached basal levels sooner than the control group but not as early as the young rats. The results of these experiments demonstrate a critical correlation between TNF-α and the rate of learning and the pattern of NE release during eyeblink conditioning.
PMCID: PMC3095107  PMID: 21593991
Learning; cytokines; memory; consolidation; aging; microglia
6.  Neuron-Microglia Dialogue and Hippocampal Neurogenesis in the Aged Brain 
Aging and Disease  2010;1(3):232-244.
Age-related changes in innate immune function and glial-neuronal communication are early and critical events in brain aging and neurodegenerative disease, and lead to a chronic increase in oxidative stress and inflammation, which initiates neuronal dysfunction and reduced synaptic plasticity, and ultimately disruption in learning and memory in the aged brain. Several lines of evidence suggest a correlation between adult neurogenesis and learning. It has been proposed that a decline in hippocampal neurogenesis contributes to a physiologic decline in brain function. Recently, new and important insights relating to the production of new neurons affecting hippocampal-dependent memory ability have been provided. A multitude of factors have been shown to regulate the production of new neurons in the adult hippocampus, many of which change as a result of aging. Yet, the potential importance of neurogenesis in some affective and cognitive behaviors, as well as endogenous tissue repair mechanisms, makes further investigation of neurogenic regulators warranted. We have recent evidence that key regulators of communication between neurons and microglia are disrupted in the aged brain and may be one of the factors that precedes and initiates the observed increase in chronic inflammatory state. In this review the role of dysfunction in these neuronal-glial communication regulators underlying age-related impairments in cognition and hippocampal neurogenesis will be discussed. An understanding of these mechanisms will lead to the development of preventive or protective therapies.
PMCID: PMC3180926  PMID: 21961084
Neurogenesis; aged brain; hippocampus; neuron; microglia

Results 1-6 (6)