PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
jtitle_s:("Age (dorer)")
1.  Spatial reversal learning is impaired by age in pet dogs 
Age  2013;35(6):2273-2282.
Aged dogs spontaneously develop progressive decline in both cognitive and behavioral function, in addition to neuropathological changes, that collectively parallel several aspects of human aging and Alzheimer’s disease progression and likely contribute to the development of canine cognitive dysfunction syndrome. In the current study, ethologically relevant spatial learning, retention, and reversal learning tasks were conducted, with the goal of expanding canine neuropsychological testing to pet dogs. Initially, dogs (N = 44, aged 7.8 ± 2.8 years, mean ± SD) had to learn which of two alternative routes successfully led out of a T-maze. Two weeks later, long-term memory retention was assessed, immediately followed by a reversal learning task in which the previously correct route out of the maze was reversed compared with the initial learning and memory retention tasks. No effects of age were evident on the learning or retention tasks. However, older (≥8 years) dogs were significantly impaired on the reversal learning task compared with younger ones (<8 years). Moreover, trial response latency was significantly increased in aged dogs across both the initial and reversal learning tasks but not on the retention task, which suggests that processing speed was impaired by increasing age during the acquisition of novel spatial information but not during performance of previously learned responses. Overall, the current study provides a framework for assessing cognitive function in pet dogs, which should improve understanding of the effects of aging on cognition in the dog population.
doi:10.1007/s11357-013-9524-0
PMCID: PMC3824977  PMID: 23529504
Aging; Cognitive impairment; Pet dog; Navigation task; Spatial cognition
2.  Age and distraction are determinants of performance on a novel visual search task in aged Beagle dogs 
Age  2011;34(1):67-73.
Aging has been shown to disrupt performance on tasks that require intact visual search and discrimination abilities in human studies. The goal of the present study was to determine if canines show age-related decline in their ability to perform a novel simultaneous visual search task. Three groups of canines were included: a young group (N = 10; 3 to 4.5 years), an old group (N = 10; 8 to 9.5 years), and a senior group (N = 8; 11 to 15.3 years). Subjects were first tested for their ability to learn a simple two-choice discrimination task, followed by the visual search task. Attentional demands in the task were manipulated by varying the number of distracter items; dogs received an equal number of trials with either zero, one, two, or three distracters. Performance on the two-choice discrimination task varied with age, with senior canines making significantly more errors than the young. Performance accuracy on the visual search task also varied with age; senior animals were significantly impaired compared to both the young and old, and old canines were intermediate in performance between young and senior. Accuracy decreased significantly with added distracters in all age groups. These results suggest that aging impairs the ability of canines to discriminate between task-relevant and -irrelevant stimuli. This is likely to be derived from impairments in cognitive domains such as visual memory and learning and selective attention.
doi:10.1007/s11357-011-9219-3
PMCID: PMC3260365  PMID: 21336566
Aging; Canine; Attention; Distraction; Visual learning
3.  Assessment of nutritional interventions for modification of age-associated cognitive decline using a canine model of human aging 
Age  2005;27(1):27-37.
The present review focuses on the utility of a canine model in evaluating nutritional interventions for age-related cognitive dysfunction. Aged dogs demonstrate progressive cognitive decline with concurrent amyloid-beta pathology that parallels the pathology observed in aging humans. Dogs, therefore, provide a natural model of human pathological aging. We have and are in the process of evaluating several nutritional-based interventions aimed at preventing cognitive decline and brain aging. In a three-year longitudinal study, we examined the effects of a diet enriched with antioxidants and mitochondrial cofactors on several measures of cognition and brain aging. Compared to controls, aged dogs on the enriched diet demonstrated both short- and long-term cognitive benefits, as well decreased deposition of amyloid-beta protein. The diet also reduced behavioral signs associated with canine Cognitive Dysfunction Syndrome when assessed in veterinary clinical trials. We also have preliminary evidence suggesting a beneficial effect of a proprietary blend of docosahexaenoic acid and phospholipids on both cognitive and physiological measures. Collectively, our data indicate (1) that the dog, either in the laboratory or in the clinic, provides an important tool for assessing nutritional interventions and (2) that combination interventions aimed at several mechanisms of pathological aging may prove more effective than single nutritive components in human trials.
doi:10.1007/s11357-005-4001-z
PMCID: PMC3456092  PMID: 23598601
aging; Alzheimer’s disease; antioxidants; brain pathology; canine model; cognitive dysfunction; docosahexaenoic acid; mitochondrial cofactors; nutritional interventions; phospholipids

Results 1-3 (3)