Search tips
Search criteria

Results 1-25 (26)

Clipboard (0)
Year of Publication
1.  In Silico Docking of HNF-1a Receptor Ligands 
Advances in Bioinformatics  2012;2012:705435.
Background. HNF-1a is a transcription factor that regulates glucose metabolism by expression in various tissues. Aim. To dock potential ligands of HNF-1a using docking software in silico. Methods. We performed in silico studies using HNF-1a protein 2GYP·pdb and the following softwares: ISIS/Draw 2.5SP4, ARGUSLAB 4.0.1, and HEX5.1. Observations. The docking distances (in angstrom units: 1 angstrom unit (Å) = 0.1 nanometer or 1 × 10−10 metres) with ligands in decreasing order are as follows: resveratrol (3.8 Å), aspirin (4.5 Å), stearic acid (4.9 Å), retinol (6.0 Å), nitrazepam (6.8 Å), ibuprofen (7.9 Å), azulfidine (9.0 Å), simvastatin (9.0 Å), elaidic acid (10.1 Å), and oleic acid (11.6 Å). Conclusion. HNF-1a domain interacted most closely with resveratrol and aspirin
PMCID: PMC3535823  PMID: 23316227
2.  Do Peers See More in a Paper Than Its Authors? 
Advances in Bioinformatics  2012;2012:750214.
Recent years have shown a gradual shift in the content of biomedical publications that is freely accessible, from titles and abstracts to full text. This has enabled new forms of automatic text analysis and has given rise to some interesting questions: How informative is the abstract compared to the full-text? What important information in the full-text is not present in the abstract? What should a good summary contain that is not already in the abstract? Do authors and peers see an article differently? We answer these questions by comparing the information content of the abstract to that in citances—sentences containing citations to that article. We contrast the important points of an article as judged by its authors versus as seen by peers. Focusing on the area of molecular interactions, we perform manual and automatic analysis, and we find that the set of all citances to a target article not only covers most information (entities, functions, experimental methods, and other biological concepts) found in its abstract, but also contains 20% more concepts. We further present a detailed summary of the differences across information types, and we examine the effects other citations and time have on the content of citances.
PMCID: PMC3514807  PMID: 23227044
3.  Wavelet Packet Entropy for Heart Murmurs Classification 
Advances in Bioinformatics  2012;2012:327269.
Heart murmurs are the first signs of cardiac valve disorders. Several studies have been conducted in recent years to automatically differentiate normal heart sounds, from heart sounds with murmurs using various types of audio features. Entropy was successfully used as a feature to distinguish different heart sounds. In this paper, new entropy was introduced to analyze heart sounds and the feasibility of using this entropy in classification of five types of heart sounds and murmurs was shown. The entropy was previously introduced to analyze mammograms. Four common murmurs were considered including aortic regurgitation, mitral regurgitation, aortic stenosis, and mitral stenosis. Wavelet packet transform was employed for heart sound analysis, and the entropy was calculated for deriving feature vectors. Five types of classification were performed to evaluate the discriminatory power of the generated features. The best results were achieved by BayesNet with 96.94% accuracy. The promising results substantiate the effectiveness of the proposed wavelet packet entropy for heart sounds classification.
PMCID: PMC3512213  PMID: 23227043
4.  On the Meaning of Affinity Limits in B-Cell Epitope Prediction for Antipeptide Antibody-Mediated Immunity 
Advances in Bioinformatics  2012;2012:346765.
B-cell epitope prediction aims to aid the design of peptide-based immunogens (e.g., vaccines) for eliciting antipeptide antibodies that protect against disease, but such antibodies fail to confer protection and even promote disease if they bind with low affinity. Hence, the Immune Epitope Database (IEDB) was searched to obtain published thermodynamic and kinetic data on binding interactions of antipeptide antibodies. The data suggest that the affinity of the antibodies for their immunizing peptides appears to be limited in a manner consistent with previously proposed kinetic constraints on affinity maturation in vivo and that cross-reaction of the antibodies with proteins tends to occur with lower affinity than the corresponding reaction of the antibodies with their immunizing peptides. These observations better inform B-cell epitope prediction to avoid overestimating the affinity for both active and passive immunization; whereas active immunization is subject to limitations of affinity maturation in vivo and of the capacity to accumulate endogenous antibodies, passive immunization may transcend such limitations, possibly with the aid of artificial affinity-selection processes and of protein engineering. Additionally, protein disorder warrants further investigation as a possible supplementary criterion for B-cell epitope prediction, where such disorder obviates thermodynamically unfavorable protein structural adjustments in cross-reactions between antipeptide antibodies and proteins.
PMCID: PMC3505629  PMID: 23209458
5.  Application of an Integrative Computational Framework in Trancriptomic Data of Atherosclerotic Mice Suggests Numerous Molecular Players 
Advances in Bioinformatics  2012;2012:453513.
Atherosclerosis is a multifactorial disease involving a lot of genes and proteins recruited throughout its manifestation. The present study aims to exploit bioinformatic tools in order to analyze microarray data of atherosclerotic aortic lesions of ApoE knockout mice, a model widely used in atherosclerosis research. In particular, a dynamic analysis was performed among young and aged animals, resulting in a list of 852 significantly altered genes. Pathway analysis indicated alterations in critical cellular processes related to cell communication and signal transduction, immune response, lipid transport, and metabolism. Cluster analysis partitioned the significantly differentiated genes in three major clusters of similar expression profile. Promoter analysis applied to functional related groups of the same cluster revealed shared putative cis-elements potentially contributing to a common regulatory mechanism. Finally, by reverse engineering the functional relevance of differentially expressed genes with specific cellular pathways, putative genes acting as hubs, were identified, linking functionally disparate cellular processes in the context of traditional molecular description.
PMCID: PMC3502768  PMID: 23193398
6.  Intervention in Biological Phenomena via Feedback Linearization 
Advances in Bioinformatics  2012;2012:534810.
The problems of modeling and intervention of biological phenomena have captured the interest of many researchers in the past few decades. The aim of the therapeutic intervention strategies is to move an undesirable state of a diseased network towards a more desirable one. Such an objective can be achieved by the application of drugs to act on some genes/metabolites that experience the undesirable behavior. For the purpose of design and analysis of intervention strategies, mathematical models that can capture the complex dynamics of the biological systems are needed. S-systems, which offer a good compromise between accuracy and mathematical flexibility, are a promising framework for modeling the dynamical behavior of biological phenomena. Due to the complex nonlinear dynamics of the biological phenomena represented by S-systems, nonlinear intervention schemes are needed to cope with the complexity of the nonlinear S-system models. Here, we present an intervention technique based on feedback linearization for biological phenomena modeled by S-systems. This technique is based on perfect knowledge of the S-system model. The proposed intervention technique is applied to the glycolytic-glycogenolytic pathway, and simulation results presented demonstrate the effectiveness of the proposed technique.
PMCID: PMC3502753  PMID: 23209459
7.  MicroRNA Response Elements-Mediated miRNA-miRNA Interactions in Prostate Cancer 
Advances in Bioinformatics  2012;2012:839837.
The cell is a highly organized system of interacting molecules including proteins, mRNAs, and miRNAs. Analyzing the cell from a systems perspective by integrating different types of data helps revealing the complexity of diseases. Although there is emerging evidence that microRNAs have a functional role in cancer, the role of microRNAs in mediating cancer progression and metastasis remains not fully explored. As the amount of available miRNA and mRNA gene expression data grows, more systematic methods combining gene expression and biological networks become necessary to explore miRNA function. In this work I integrated functional miRNA-target interactions with mRNA and miRNA expression to infer mRNA-mediated miRNA-miRNA interactions. The inferred network represents miRNA modulation through common targets. The network is used to characterize the functional role of microRNA response element (MRE) to mediate interactions between miRNAs targeting the MRE. Results revealed that miRNA-1 is a key player in regulating prostate cancer progression. 11 miRNAs were identified as diagnostic and prognostic biomarkers that act as tumor suppressor miRNAs. This work demonstrates the utility of a network analysis as opposed to differential expression to find important miRNAs that regulate prostate cancer.
PMCID: PMC3502784  PMID: 23193399
8.  Flux Analysis of the Trypanosoma brucei Glycolysis Based on a Multiobjective-Criteria Bioinformatic Approach 
Advances in Bioinformatics  2012;2012:159423.
Trypanosoma brucei is a protozoan parasite of major of interest in discovering new genes for drug targets. This parasite alternates its life cycle between the mammal host(s) (bloodstream form) and the insect vector (procyclic form), with two divergent glucose metabolism amenable to in vitro culture. While the metabolic network of the bloodstream forms has been well characterized, the flux distribution between the different branches of the glucose metabolic network in the procyclic form has not been addressed so far. We present a computational analysis (called Metaboflux) that exploits the metabolic topology of the procyclic form, and allows the incorporation of multipurpose experimental data to increase the biological relevance of the model. The alternatives resulting from the structural complexity of networks are formulated as an optimization problem solved by a metaheuristic where experimental data are modeled in a multiobjective function. Our results show that the current metabolic model is in agreement with experimental data and confirms the observed high metabolic flexibility of glucose metabolism. In addition, Metaboflux offers a rational explanation for the high flexibility in the ratio between final products from glucose metabolism, thsat is, flux redistribution through the malic enzyme steps.
PMCID: PMC3477527  PMID: 23097667
9.  CMD: A Database to Store the Bonding States of Cysteine Motifs with Secondary Structures 
Advances in Bioinformatics  2012;2012:849830.
Computational approaches to the disulphide bonding state and its connectivity pattern prediction are based on various descriptors. One descriptor is the amino acid sequence motifs flanking the cysteine residue motifs. Despite the existence of disulphide bonding information in many databases and applications, there is no complete reference and motif query available at the moment. Cysteine motif database (CMD) is the first online resource that stores all cysteine residues, their flanking motifs with their secondary structure, and propensity values assignment derived from the laboratory data. We extracted more than 3 million cysteine motifs from PDB and UniProt data, annotated with secondary structure assignment, propensity value assignment, and frequency of occurrence and coefficiency of their bonding status. Removal of redundancies generated 15875 unique flanking motifs that are always bonded and 41577 unique patterns that are always nonbonded. Queries are based on the protein ID, FASTA sequence, sequence motif, and secondary structure individually or in batch format using the provided APIs that allow remote users to query our database via third party software and/or high throughput screening/querying. The CMD offers extensive information about the bonded, free cysteine residues, and their motifs that allows in-depth characterization of the sequence motif composition.
PMCID: PMC3474208  PMID: 23091487
10.  A High-Throughput Computational Framework for Identifying Significant Copy Number Aberrations from Array Comparative Genomic Hybridisation Data 
Advances in Bioinformatics  2012;2012:876976.
Reliable identification of copy number aberrations (CNA) from comparative genomic hybridization data would be improved by the availability of a generalised method for processing large datasets. To this end, we developed swatCGH, a data analysis framework and region detection heuristic for computational grids. swatCGH analyses sequentially displaced (sliding) windows of neighbouring probes and applies adaptive thresholds of varying stringency to identify the 10% of each chromosome that contains the most frequently occurring CNAs. We used the method to analyse a published dataset, comparing data preprocessed using four different DNA segmentation algorithms, and two methods for prioritising the detected CNAs. The consolidated list of the most commonly detected aberrations confirmed the value of swatCGH as a simplified high-throughput method for identifying biologically significant CNA regions of interest.
PMCID: PMC3449101  PMID: 23008709
11.  Gap Detection for Genome-Scale Constraint-Based Models 
Advances in Bioinformatics  2012;2012:323472.
Constraint-based metabolic models are currently the most comprehensive system-wide models of cellular metabolism. Several challenges arise when building an in silico constraint-based model of an organism that need to be addressed before flux balance analysis (FBA) can be applied for simulations. An algorithm called FBA-Gap is presented here that aids the construction of a working model based on plausible modifications to a given list of reactions that are known to occur in the organism. When applied to a working model, the algorithm gives a hypothesis concerning a minimal medium for sustaining the cell in culture. The utility of the algorithm is demonstrated in creating a new model organism and is applied to four existing working models for generating hypotheses about culture media. In modifying a partial metabolic reconstruction so that biomass may be produced using FBA, the proposed method is more efficient than a previously proposed method in that fewer new reactions are added to complete the model. The proposed method is also more accurate than other approaches in that only biologically plausible reactions and exchange reactions are used.
PMCID: PMC3444828  PMID: 22997515
12.  Producing High-Accuracy Lattice Models from Protein Atomic Coordinates Including Side Chains 
Advances in Bioinformatics  2012;2012:148045.
Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in addition to the known coordinate RMSD method. We tested LatFit's accuracy and speed using a large nonredundant set of high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight's walk. Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low deviation from the original data (~1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such models.
PMCID: PMC3426164  PMID: 22934109
13.  Sequence Complexity of Chromosome 3 in Caenorhabditis elegans 
Advances in Bioinformatics  2012;2012:287486.
The nucleotide sequences complexity in chromosome 3 of Caenorhabditis elegans (C. elegans) is studied. The complexity of these sequences is compared with some random sequences. Moreover, by using some parameters related to complexity such as fractal dimension and frequency, indicator matrix is given a first classification of sequences of C. elegans. In particular, the sequences with highest and lowest fractal value are singled out. It is shown that the intrinsic nature of the low fractal dimension sequences has many common features with the random sequences.
PMCID: PMC3418640  PMID: 22919380
14.  Detecting Cancer Outlier Genes with Potential Rearrangement Using Gene Expression Data and Biological Networks 
Advances in Bioinformatics  2012;2012:373506.
Gene alterations are a major component of the landscape of tumor genomes. To assess the significance of these alterations in the development of prostate cancer, it is necessary to identify these alterations and analyze them from systems biology perspective. Here, we present a new method (EigFusion) for predicting outlier genes with potential gene rearrangement. EigFusion demonstrated excellent performance in identifying outlier genes with potential rearrangement by testing it to synthetic and real data to evaluate performance. EigFusion was able to identify previously unrecognized genes such as FABP5 and KCNH8 and confirmed their association with primary and metastatic prostate samples while confirmed the metastatic specificity for other genes such as PAH, TOP2A, and SPINK1. We performed protein network based approaches to analyze the network context of potential rearranged genes. Functional gene rearrangement Modules are constructed by integrating functional protein networks. Rearranged genes showed to be highly connected to well-known altered genes in cancer such as AR, RB1, MYC, and BRCA1. Finally, using clinical outcome data of prostate cancer patients, potential rearranged genes demonstrated significant association with prostate cancer specific death.
PMCID: PMC3394389  PMID: 22811706
15.  Literature Retrieval and Mining in Bioinformatics: State of the Art and Challenges 
Advances in Bioinformatics  2012;2012:573846.
The world has widely changed in terms of communicating, acquiring, and storing information. Hundreds of millions of people are involved in information retrieval tasks on a daily basis, in particular while using a Web search engine or searching their e-mail, making such field the dominant form of information access, overtaking traditional database-style searching. How to handle this huge amount of information has now become a challenging issue. In this paper, after recalling the main topics concerning information retrieval, we present a survey on the main works on literature retrieval and mining in bioinformatics. While claiming that information retrieval approaches are useful in bioinformatics tasks, we discuss some challenges aimed at showing the effectiveness of these approaches applied therein.
PMCID: PMC3388278  PMID: 22778730
16.  Exploring Biomolecular Literature with EVEX: Connecting Genes through Events, Homology, and Indirect Associations 
Advances in Bioinformatics  2012;2012:582765.
Technological advancements in the field of genetics have led not only to an abundance of experimental data, but also caused an exponential increase of the number of published biomolecular studies. Text mining is widely accepted as a promising technique to help researchers in the life sciences deal with the amount of available literature. This paper presents a freely available web application built on top of 21.3 million detailed biomolecular events extracted from all PubMed abstracts. These text mining results were generated by a state-of-the-art event extraction system and enriched with gene family associations and abstract generalizations, accounting for lexical variants and synonymy. The EVEX resource locates relevant literature on phosphorylation, regulation targets, binding partners, and several other biomolecular events and assigns confidence values to these events. The search function accepts official gene/protein symbols as well as common names from all species. Finally, the web application is a powerful tool for generating homology-based hypotheses as well as novel, indirect associations between genes and proteins such as coregulators.
PMCID: PMC3375141  PMID: 22719757
17.  Maximum Recommended Dosage of Lithium for Pregnant Women Based on a PBPK Model for Lithium Absorption 
Advances in Bioinformatics  2012;2012:352729.
Treatment of bipolar disorder with lithium therapy during pregnancy is a medical challenge. Bipolar disorder is more prevalent in women and its onset is often concurrent with peak reproductive age. Treatment typically involves administration of the element lithium, which has been classified as a class D drug (legal to use during pregnancy, but may cause birth defects) and is one of only thirty known teratogenic drugs. There is no clear recommendation in the literature on the maximum acceptable dosage regimen for pregnant, bipolar women. We recommend a maximum dosage regimen based on a physiologically based pharmacokinetic (PBPK) model. The model simulates the concentration of lithium in the organs and tissues of a pregnant woman and her fetus. First, we modeled time-dependent lithium concentration profiles resulting from lithium therapy known to have caused birth defects. Next, we identified maximum and average fetal lithium concentrations during treatment. Then, we developed a lithium therapy regimen to maximize the concentration of lithium in the mother's brain, while maintaining the fetal concentration low enough to reduce the risk of birth defects. This maximum dosage regimen suggested by the model was 400 mg lithium three times per day.
PMCID: PMC3369391  PMID: 22693500
18.  BioEve Search: A Novel Framework to Facilitate Interactive Literature Search 
Advances in Bioinformatics  2012;2012:509126.
Background. Recent advances in computational and biological methods in last two decades have remarkably changed the scale of biomedical research and with it began the unprecedented growth in both the production of biomedical data and amount of published literature discussing it. An automated extraction system coupled with a cognitive search and navigation service over these document collections would not only save time and effort, but also pave the way to discover hitherto unknown information implicitly conveyed in the texts. Results. We developed a novel framework (named “BioEve”) that seamlessly integrates Faceted Search (Information Retrieval) with Information Extraction module to provide an interactive search experience for the researchers in life sciences. It enables guided step-by-step search query refinement, by suggesting concepts and entities (like genes, drugs, and diseases) to quickly filter and modify search direction, and thereby facilitating an enriched paradigm where user can discover related concepts and keywords to search while information seeking. Conclusions. The BioEve Search framework makes it easier to enable scalable interactive search over large collection of textual articles and to discover knowledge hidden in thousands of biomedical literature articles with ease.
PMCID: PMC3368157  PMID: 22693501
19.  BRASERO: A Resource for Benchmarking RNA Secondary Structure Comparison Algorithms 
Advances in Bioinformatics  2012;2012:893048.
The pairwise comparison of RNA secondary structures is a fundamental problem, with direct application in mining databases for annotating putative noncoding RNA candidates in newly sequenced genomes. An increasing number of software tools are available for comparing RNA secondary structures, based on different models (such as ordered trees or forests, arc annotated sequences, and multilevel trees) and computational principles (edit distance, alignment). We describe here the website BRASERO that offers tools for evaluating such software tools on real and synthetic datasets.
PMCID: PMC3366197  PMID: 22675348
20.  Applications of Natural Language Processing in Biodiversity Science 
Advances in Bioinformatics  2012;2012:391574.
Centuries of biological knowledge are contained in the massive body of scientific literature, written for human-readability but too big for any one person to consume. Large-scale mining of information from the literature is necessary if biology is to transform into a data-driven science. A computer can handle the volume but cannot make sense of the language. This paper reviews and discusses the use of natural language processing (NLP) and machine-learning algorithms to extract information from systematic literature. NLP algorithms have been used for decades, but require special development for application in the biological realm due to the special nature of the language. Many tools exist for biological information extraction (cellular processes, taxonomic names, and morphological characters), but none have been applied life wide and most still require testing and development. Progress has been made in developing algorithms for automated annotation of taxonomic text, identification of taxonomic names in text, and extraction of morphological character information from taxonomic descriptions. This manuscript will briefly discuss the key steps in applying information extraction tools to enhance biodiversity science.
PMCID: PMC3364545  PMID: 22685456
21.  A Topology-Based Metric for Measuring Term Similarity in the Gene Ontology 
Advances in Bioinformatics  2012;2012:975783.
The wide coverage and biological relevance of the Gene Ontology (GO), confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.
PMCID: PMC3361142  PMID: 22666244
22.  Neutropenia Prediction Based on First-Cycle Blood Counts Using a FOS-3NN Classifier 
Advances in Bioinformatics  2012;2011:172615.
Background. Delivery of full doses of adjuvant chemotherapy on schedule is key to optimal breast cancer outcomes. Neutropenia is a serious complication of chemotherapy and a common barrier to this goal, leading to dose reductions or delays in treatment. While past research has observed correlations between complete blood count data and neutropenic events, a reliable method of classifying breast cancer patients into low- and high-risk groups remains elusive. Patients and Methods. Thirty-five patients receiving adjuvant chemotherapy for early-stage breast cancer under the care of a single oncologist are examined in this study. FOS-3NN stratifies patient risk based on complete blood count data after the first cycle of treatment. All classifications are independent of breast cancer subtype and clinical markers, with risk level determined by the kinetics of patient blood count response to the first cycle of treatment. Results. In an independent test set of patients unseen by FOS-3NN, 19 out of 21 patients were correctly classified (Fisher's exact test probability P < 0.00023 [2 tailed], Matthews' correlation coefficient +0.83). Conclusions. We have developed a model that accurately predicts neutropenic events in a population treated with adjuvant chemotherapy in the first cycle of a 6-cycle treatment.
PMCID: PMC3290820  PMID: 22454638
23.  Training Experimental Biologists in Bioinformatics 
Advances in Bioinformatics  2012;2012:672749.
Bioinformatics, for its very nature, is devoted to a set of targets that constantly evolve. Training is probably the best response to the constant need for the acquisition of bioinformatics skills. It is interesting to assess the effects of training in the different sets of researchers that make use of it. While training bench experimentalists in the life sciences, we have observed instances of changes in their attitudes in research that, if well exploited, can have beneficial impacts in the dialogue with professional bioinformaticians and influence the conduction of the research itself.
PMCID: PMC3286881  PMID: 22400026
24.  Inferring Biological Mechanisms by Data-Based Mathematical Modelling: Compartment-Specific Gene Activation during Sporulation in Bacillus subtilis as a Test Case 
Advances in Bioinformatics  2012;2011:124062.
Biological functionality arises from the complex interactions of simple components. Emerging behaviour is difficult to recognize with verbal models alone, and mathematical approaches are important. Even few interacting components can give rise to a wide range of different responses, that is, sustained, transient, oscillatory, switch-like responses, depending on the values of the model parameters. A quantitative comparison of model predictions and experiments is therefore important to distinguish between competing hypotheses and to judge whether a certain regulatory behaviour is at all possible and plausible given the observed type and strengths of interactions and the speed of reactions. Here I will review a detailed model for the transcription factor σF, a regulator of cell differentiation during sporulation in Bacillus subtilis. I will focus in particular on the type of conclusions that can be drawn from detailed, carefully validated models of biological signaling networks. For most systems, such detailed experimental information is currently not available, but accumulating biochemical data through technical advances are likely to enable the detailed modelling of an increasing number of pathways. A major challenge will be the linking of such detailed models and their integration into a multiscale framework to enable their analysis in a larger biological context.
PMCID: PMC3270535  PMID: 22312331
25.  Structural Basis for Species Selectivity in the HIV-1 gp120-CD4 Interaction: Restoring Affinity to gp120 in Murine CD4 Mimetic Peptides 
Advances in Bioinformatics  2012;2011:736593.
The first step of HIV-1 infection involves interaction between the viral glycoprotein gp120 and the human cellular receptor CD4. Inhibition of the gp120-CD4 interaction represents an attractive strategy to block HIV-1 infection. In an attempt to explore the known lack of affinity of murine CD4 to gp120, we have investigated peptides presenting the putative gp120-binding site of murine CD4 (mCD4). Molecular modeling indicates that mCD4 protein cannot bind gp120 due to steric clashes, while the larger conformational flexibility of mCD4 peptides allows an interaction. This finding is confirmed by experimental binding assays, which also evidenced specificity of the peptide-gp120 interaction. Molecular dynamics simulations indicate that the mCD4-peptide stably interacts with gp120 via an intermolecular β-sheet, while an important salt-bridge formed by a C-terminal lysine is lost. Fixation of the C-terminus by introducing a disulfide bridge between the N- and C-termini of the peptide significantly enhanced the affinity to gp120.
PMCID: PMC3270550  PMID: 22312332

Results 1-25 (26)