PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  A Topology-Based Metric for Measuring Term Similarity in the Gene Ontology 
Advances in Bioinformatics  2012;2012:975783.
The wide coverage and biological relevance of the Gene Ontology (GO), confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.
doi:10.1155/2012/975783
PMCID: PMC3361142  PMID: 22666244
2.  Generation and Analysis of Large-Scale Data-Driven Mycobacterium tuberculosis Functional Networks for Drug Target Identification 
Advances in Bioinformatics  2011;2011:801478.
Technological developments in large-scale biological experiments, coupled with bioinformatics tools, have opened the doors to computational approaches for the global analysis of whole genomes. This has provided the opportunity to look at genes within their context in the cell. The integration of vast amounts of data generated by these technologies provides a strategy for identifying potential drug targets within microbial pathogens, the causative agents of infectious diseases. As proteins are druggable targets, functional interaction networks between proteins are used to identify proteins essential to the survival, growth, and virulence of these microbial pathogens. Here we have integrated functional genomics data to generate functional interaction networks between Mycobacterium tuberculosis proteins and carried out computational analyses to dissect the functional interaction network produced for identifying drug targets using network topological properties. This study has provided the opportunity to expand the range of potential drug targets and to move towards optimal target-based strategies.
doi:10.1155/2011/801478
PMCID: PMC3235424  PMID: 22190924

Results 1-2 (2)