Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  iFlow: A Graphical User Interface for Flow Cytometry Tools in Bioconductor 
Advances in Bioinformatics  2009;2009:103839.
Flow cytometry (FCM) has become an important analysis technology in health care and medical research, but the large volume of data produced by modern high-throughput experiments has presented significant new challenges for computational analysis tools. The development of an FCM software suite in Bioconductor represents one approach to overcome these challenges. In the spirit of the R programming language (Tree Star Inc., “FlowJo,”, these tools are predominantly console-driven, allowing for programmatic access and rapid development of novel algorithms. Using this software requires a solid understanding of programming concepts and of the R language. However, some of these tools|in particular the statistical graphics and novel analytical methods|are also useful for nonprogrammers. To this end, we have developed an open source, extensible graphical user interface (GUI) iFlow, which sits on top of the Bioconductor backbone, enabling basic analyses by means of convenient graphical menus and wizards. We envision iFlow to be easily extensible in order to quickly integrate novel methodological developments.
PMCID: PMC2798115  PMID: 20049160
2.  Analysis of High-Throughput Flow Cytometry Data Using plateCore 
Advances in Bioinformatics  2009;2009:356141.
Flow cytometry (FCM) software packages from R/Bioconductor, such as flowCore and flowViz, serve as an open platform for development of new analysis tools and methods. We created plateCore, a new package that extends the functionality in these core packages to enable automated negative control-based gating and make the processing and analysis of plate-based data sets from high-throughput FCM screening experiments easier. plateCore was used to analyze data from a BD FACS CAP screening experiment where five Peripheral Blood Mononucleocyte Cell (PBMC) samples were assayed for 189 different human cell surface markers. This same data set was also manually analyzed by a cytometry expert using the FlowJo data analysis software package (TreeStar, USA). We show that the expression values for markers characterized using the automated approach in plateCore are in good agreement with those from FlowJo, and that using plateCore allows for more reproducible analyses of FCM screening data.
PMCID: PMC2777006  PMID: 19956418

Results 1-2 (2)