PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
2.  A Survey of Flow Cytometry Data Analysis Methods 
Advances in Bioinformatics  2009;2009:584603.
Flow cytometry (FCM) is widely used in health research and in treatment for a variety of tasks, such as in the diagnosis and monitoring of leukemia and lymphoma patients, providing the counts of helper-T lymphocytes needed to monitor the course and treatment of HIV infection, the evaluation of peripheral blood hematopoietic stem cell grafts, and many other diseases. In practice, FCM data analysis is performed manually, a process that requires an inordinate amount of time and is error-prone, nonreproducible, nonstandardized, and not open for re-evaluation, making it the most limiting aspect of this technology. This paper reviews state-of-the-art FCM data analysis approaches using a framework introduced to report each of the components in a data analysis pipeline. Current challenges and possible future directions in developing fully automated FCM data analysis tools are also outlined.
doi:10.1155/2009/584603
PMCID: PMC2798157  PMID: 20049163
3.  Analysis of High-Throughput Flow Cytometry Data Using plateCore 
Advances in Bioinformatics  2009;2009:356141.
Flow cytometry (FCM) software packages from R/Bioconductor, such as flowCore and flowViz, serve as an open platform for development of new analysis tools and methods. We created plateCore, a new package that extends the functionality in these core packages to enable automated negative control-based gating and make the processing and analysis of plate-based data sets from high-throughput FCM screening experiments easier. plateCore was used to analyze data from a BD FACS CAP screening experiment where five Peripheral Blood Mononucleocyte Cell (PBMC) samples were assayed for 189 different human cell surface markers. This same data set was also manually analyzed by a cytometry expert using the FlowJo data analysis software package (TreeStar, USA). We show that the expression values for markers characterized using the automated approach in plateCore are in good agreement with those from FlowJo, and that using plateCore allows for more reproducible analyses of FCM screening data.
doi:10.1155/2009/356141
PMCID: PMC2777006  PMID: 19956418

Results 1-3 (3)