Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
more »
Year of Publication
Document Types
1.  A novel biclustering approach with iterative optimization to analyze gene expression data 
Video abstract
With the dramatic increase in microarray data, biclustering has become a promising tool for gene expression analysis. Biclustering has been proven to be superior over clustering in identifying multifunctional genes and searching for co-expressed genes under a few specific conditions; that is, a subgroup of all conditions. Biclustering based on a genetic algorithm (GA) has shown better performance than greedy algorithms, but the overlap state for biclusters must be treated more systematically.
We developed a new biclustering algorithm (binary-iterative genetic algorithm [BIGA]), based on an iterative GA, by introducing a novel, ternary-digit chromosome encoding function. BIGA searches for a set of biclusters by iterative binary divisions that allow the overlap state to be explicitly considered. In addition, the average of the Pearson’s correlation coefficient was employed to measure the relationship of genes within a bicluster, instead of the mean square residual, the popular classical index. As compared to the six existing algorithms, BIGA found highly correlated biclusters, with large gene coverage and reasonable gene overlap. The gene ontology (GO) enrichment showed that most of the biclusters are significant, with at least one GO term over represented.
BIGA is a powerful tool to analyze large amounts of gene expression data, and will facilitate the elucidation of the underlying functional mechanisms in living organisms.
PMCID: PMC3459542  PMID: 23055751
biclustering; microarray data; genetic algorithm; Pearson’s correlation coefficient
2.  Contact-based ligand-clustering approach for the identification of active compounds in virtual screening 
Evaluation of docking results is one of the most important problems for virtual screening and in silico drug design. Modern approaches for the identification of active compounds in a large data set of docked molecules use energy scoring functions. One of the general and most significant limitations of these methods relates to inaccurate binding energy estimation, which results in false scoring of docked compounds. Automatic analysis of poses using self-organizing maps (AuPosSOM) represents an alternative approach for the evaluation of docking results based on the clustering of compounds by the similarity of their contacts with the receptor. A scoring function was developed for the identification of the active compounds in the AuPosSOM clustered dataset. In addition, the AuPosSOM efficiency for the clustering of compounds and the identification of key contacts considered as important for its activity, were also improved. Benchmark tests for several targets revealed that together with the developed scoring function, AuPosSOM represents a good alternative to the energy-based scoring functions for the evaluation of docking results.
PMCID: PMC3459543  PMID: 23055752
scoring; docking; virtual screening; CAR; AuPosSOM
3.  B-Pred, a structure based B-cell epitopes prediction server 
The ability to predict immunogenic regions in selected proteins by in-silico methods has broad implications, such as allowing a quick selection of potential reagents to be used as diagnostics, vaccines, immunotherapeutics, or research tools in several branches of biological and biotechnological research. However, the prediction of antibody target sites in proteins using computational methodologies has proven to be a highly challenging task, which is likely due to the somewhat elusive nature of B-cell epitopes. This paper proposes a web-based platform for scoring potential immunological reagents based on the structures or 3D models of the proteins of interest. The method scores a protein’s peptides set, which is derived from a sliding window, based on the average solvent exposure, with a filter on the average local model quality for each peptide. The platform was validated on a custom-assembled database of 1336 experimentally determined epitopes from 106 proteins for which a reliable 3D model could be obtained through standard modeling techniques. Despite showing poor sensitivity, this method can achieve a specificity of 0.70 and a positive predictive value of 0.29 by combining these two simple parameters. These values are slightly higher than those obtained with other established sequence-based or structure-based methods that have been evaluated using the same epitopes dataset. This method is implemented in a web server called B-Pred, which is accessible at The server contains a number of original features that allow users to perform personalized reagent searches by manipulating the sliding window’s width and sliding step, changing the exposure and model quality thresholds, and running sequential queries with different parameters. The B-Pred server should assist experimentalists in the rational selection of epitope antigens for a wide range of applications.
PMCID: PMC3413014  PMID: 22888263
B-cell epitopes; immunoinformatics; bioinformatics; web server; epitope prediction
4.  A rapid method for combined analysis of common and rare variants at the level of a region, gene, or pathway 
Previously described methods for the combined analysis of common and rare variants have disadvantages such as requiring an arbitrary classification of variants or permutation testing to assess statistical significance. Here we propose a novel method which implements a weighting scheme based on allele frequencies observed in both cases and controls. Because the test is unbiased, scores can be analyzed with a standard t-test. To test its validity we applied it to data for common, rare, and very rare variants simulated under the null hypothesis. To test its power we applied it to simulated data in which association was present, including data using the observed allele frequencies of common and rare variants in NOD2 previously reported in cases of Crohn’s disease and controls. The method produced results that conformed well to those expected under the null hypothesis. It demonstrated more power to detect association when rare and common variants were analyzed jointly, the power further increasing when rare variants were assigned higher weights. 20,000 analyses of a gene containing 62 variants could be performed in 80 minutes on a laptop. This approach shows promise for the analysis of data currently emerging from genome wide sequencing studies.
PMCID: PMC3413013  PMID: 22888262
common; rare; variant; sequence; genome; exome

Results 1-4 (4)