PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Classification of heterodimer interfaces using docking models and construction of scoring functions for the complex structure prediction 
Protein–protein docking simulations can provide the predicted complex structural models. In a docking simulation, several putative structural models are selected by scoring functions from an ensemble of many complex models. Scoring functions based on statistical analyses of heterodimers are usually designed to select the complex model with the most abundant interaction mode found among the known complexes, as the correct model. However, because the formation schemes of heterodimers are extremely diverse, a single scoring function does not seem to be sufficient to describe the fitness of the predicted models other than the most abundant interaction mode. Thus, it is necessary to classify the heterodimers in terms of their individual interaction modes, and then to construct multiple scoring functions for each heterodimer type. In this study, we constructed the classification method of heterodimers based on the discriminative characters between near-native and decoy models, which were found in the comparison of the interfaces in terms of the complementarities for the hydrophobicity, the electrostatic potential and the shape. Consequently, we found four heterodimer clusters, and then constructed the multiple scoring functions, each of which was optimized for each cluster. Our multiple scoring functions were applied to the predictions in the unbound docking.
PMCID: PMC3169947  PMID: 21918618
classification of heterodimers; prediction of complex structures; scoring functions; protein-protein docking; CAPRI
2.  Discrimination between biological interfaces and crystal-packing contacts 
A discrimination method between biologically relevant interfaces and artificial crystal-packing contacts in crystal structures was constructed. The method evaluates protein-protein interfaces in terms of complementarities for hydrophobicity, electrostatic potential and shape on the protein surfaces, and chooses the most probable biological interfaces among all possible contacts in the crystal. The method uses a discriminator named as “COMP”, which is a linear combination of the complementarities for the above three surface features and does not correlate with the contact area. The discrimination of homo-dimer interfaces from symmetry-related crystal-packing contacts based on the COMP value achieved the modest success rate. Subsequent detailed review of the discrimination results raised the success rate to about 88.8%. In addition, our discrimination method yielded some clues for understanding the interaction patterns in several examples in the PDB. Thus, the COMP discriminator can also be used as an indicator of the “biological-ness” of protein-protein interfaces.
PMCID: PMC3169932  PMID: 21918609
protein-protein interaction; complementarity analysis; homo-dimer interface; crystal-packing contact; biological interfaces
3.  A method to enhance the hit ratio by a combination of structure-based drug screening and ligand-based screening 
We examined the procedures to combine two different in silico drug-screening results to achieve a high hit ratio. When the 3D structure of the target protein and some active compounds are known, both structure-based and ligand-based in silico screening methods can be applied. In the present study, the machine-learning score modification multiple target screening (MSM-MTS) method was adopted as a structure-based screening method, and the machine-learning docking score index (ML-DSI) method was adopted as a ligand-based screening method. To combine the predicted compound’s sets by these two screening methods, we examined the product of the sets (consensus set) and the sum of the sets. As a result, the consensus set achieved a higher hit ratio than the sum of the sets and than either individual predicted set. In addition, the current combination was shown to be robust enough for the structural diversities both in different crystal structure and in snapshot structures during molecular dynamics simulations.
PMCID: PMC3169939  PMID: 21918604
in silico; screening; consensus score; protein-based screening; protein-ligand docking; conformation of active site

Results 1-3 (3)