Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  Pharmacogenomics of drug efficacy in the interferon treatment of chronic hepatitis C using classification algorithms 
Chronic hepatitis C (CHC) patients often stop pursuing interferon-alfa and ribavirin (IFN-alfa/RBV) treatment because of the high cost and associated adverse effects. It is highly desirable, both clinically and economically, to establish tools to distinguish responders from nonresponders and to predict possible outcomes of the IFN-alfa/RBV treatments. Single nucleotide polymorphisms (SNPs) can be used to understand the relationship between genetic inheritance and IFN-alfa/RBV therapeutic response. The aim in this study was to establish a predictive model based on a pharmacogenomic approach. Our study population comprised Taiwanese patients with CHC who were recruited from multiple sites in Taiwan. The genotyping data was generated in the high-throughput genomics lab of Vita Genomics, Inc. With the wrapper-based feature selection approach, we employed multilayer feedforward neural network (MFNN) and logistic regression as a basis for comparisons. Our data revealed that the MFNN models were superior to the logistic regression model. The MFNN approach provides an efficient way to develop a tool for distinguishing responders from nonresponders prior to treatments. Our preliminary results demonstrated that the MFNN algorithm is effective for deriving models for pharmacogenomics studies and for providing the link from clinical factors such as SNPs to the responsiveness of IFN-alfa/RBV in clinical association studies in pharmacogenomics.
PMCID: PMC3170005  PMID: 21918625
chronic hepatitis C; artificial neural networks; interferon; pharmacogenomics; ribavirin; single nucleotide polymorphisms
2.  Identification of significant genes in genomics using Bayesian variable selection methods 
In the studies of genomics, it is essential to select a small number of genes that are more significant than the others for research ranging from candidate gene studies to genome-wide association studies. In this study, we proposed a Bayesian method for identifying the promising candidate genes that are significantly more influential than the others. We employed the framework of variable selection and a Gibbs sampling based technique to identify significant genes. The proposed approach was applied to a genomics study for persons with chronic fatigue syndrome. Our studies show that the proposed Bayesian methodology is effective for deriving models for genomic studies and for providing information on significant genes.
PMCID: PMC3169938  PMID: 21918603
Bayesian variable selection; genomics; Gibbs sampling; variable selection

Results 1-2 (2)