PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Porous titanium particles for acetabular reconstruction in total hip replacement show extensive bony armoring after 15 weeks 
Acta Orthopaedica  2014;85(6):600-608.
Background and purpose
— The bone impaction grafting technique restores bone defects in total hip replacement. Porous titanium particles (TiPs) are deformable, like bone particles, and offer better primary stability. We addressed the following questions in this animal study: are impacted TiPs osteoconductive under loaded conditions; do released micro-particles accelerate wear; and are systemic titanium blood levels elevated after implantation of TiPs?
Animals and methods —
An AAOS type-III defect was created in the right acetabulum of 10 goats weighing 63 (SD 6) kg, and reconstructed with calcium phosphate-coated TiPs and a cemented polyethylene cup. A stem with a cobalt chrome head was cemented in the femur. The goats were killed after 15 weeks. Blood samples were taken pre- and postoperatively.
Results —
The TiP-graft layer measured 5.6 (SD 0.8) mm with a mean bone ingrowth distance of 2.8 (SD 0.8) mm. Cement penetrated 0.9 (0.3–1.9) mm into the TiPs. 1 reconstruction showed minimal cement penetration (0.3 mm) and failed at the cement-TiP interface. There were no signs of accelerated wear, metallic particle debris, or osteolysis. Median systemic titanium concentrations increased on a log-linear scale from 0.5 (0.3–1.1) parts per billion (ppb) to 0.9 (0.5–2.8) ppb (p = 0.01).
Interpretation —
Adequate cement pressurization is advocated for impaction grafting with TiPs. After implantation, calcium phosphate-coated TiPs were osteoconductive under loaded conditions and caused an increase in systemic titanium concentrations. However, absolute levels remained low. There were no signs of accelerated wear. A clinical pilot study should be performed to prove that application in humans is safe in the long term.
doi:10.3109/17453674.2014.960660
PMCID: PMC4259031  PMID: 25238431
2.  Similar TKA designs with differences in clinical outcome 
Acta Orthopaedica  2011;82(6):685-691.
Background and purpose
To try to improve the outcome of our TKAs, we started to use the CKS prosthesis. However, in a retrospective analysis this design tended to give worse results. We therefore conducted a randomized, controlled trial comparing this CKS prosthesis and our standard PFC prosthesis. Because many randomized studies between different TKA concepts generally fail to show superiority of a particular design, we hypothesized that these seemingly similar designs would not lead to any difference in clinical outcome.
Patients and methods
82 patients (90 knees) were randomly allocated to one or other prosthesis, and 39 CKS prostheses and 38 PFC prostheses could be followed for mean 5.6 years. No patients were lost to follow-up. At each follow-up, patients were evaluated clinically and radiographically, and the KSS, WOMAC, VAS patient satisfaction scores and VAS for pain were recorded.
Results
With total Knee Society score (KSS) as primary endpoint, there was a difference in favor of the PFC group at final follow-up (p = 0.04). Whereas there was one revision in the PFC group, there were 6 revisions in the CKS group (p = 0.1). The survival analysis with any reoperation as endpoint showed better survival in the PFC group (97% (95% CI: 92–100) for the PFC group vs. 79% (95% CI: 66–92) for the CKS group) (p = 0.02).
Interpretation
Our hypothesis that there would be no difference in clinical outcome was rejected in this study. The PFC system showed excellent results that were comparable to those in previous reports. The CKS design had differences that had considerable negative consequences clinically. The relatively poor results have discouraged us from using this design.
doi:10.3109/17453674.2011.636677
PMCID: PMC3247886  PMID: 22066559
3.  The effect of impaction and a bioceramic coating on bone ingrowth in porous titanium particles 
Acta Orthopaedica  2011;82(3):372-377.
Background and purpose
Porous titanium (Ti) particles can be impacted like cancellous allograft bone particles, and may therefore be used as bone substitute in impaction grafting. We evaluated the effect of impaction and of a thin silicated biphasic calcium phosphate coating on osteoconduction by Ti particles.
Methods
The bone conduction chamber of Aspenberg was used in goats and filled with various groups of coated or uncoated small Ti particles (diameter 1.0–1.4 mm). Impacted allograft bone particles and empty chambers were used in control groups. Fluorochromes were administered at 4, 8, and 12 weeks. Maximum bone ingrowth distance was evaluated by histomorphometric analysis.
Results
Histology of Ti particle graft cylinders showed a dense matrix with narrow inter-particle and intra-particle pores (< 100 μm), occluding the lumen of the bone chamber. Bone ingrowth distances gradually increased with time in all groups. Maximum bone ingrowth distance was higher in originally empty chambers than those with allograft bone particles (p = 0.01) and Ti particles (p < 0.001). Maximum bone ingrowth in allograft bone particles was higher than in all Ti groups (p ≤ 0.001). Impaction reduced osteoconduction and the coating partially compensated for the negative effect of impaction, but these differences were not statistically significant. No osteolytic reactions were found.
Interpretation
Osteoconduction in the bone conduction chamber was reduced more by the insertion of small Ti particles than by insertion of small allograft bone particles. The osteoconductive potential of porous Ti particles should be studied further with larger-sized particles, which may allow bone ingrowth after impaction through larger inter-particle pores.
doi:10.3109/17453674.2011.579515
PMCID: PMC3235319  PMID: 21504310
4.  Posterior cruciate ligament recruitment affects antero-posterior translation during flexion gap distraction in total knee replacement 
Acta Orthopaedica  2010;81(4):471-477.
Background and purpose
Because of the oblique orientation of the posterior cruciate ligament (PCL), flexion gap distraction could lead to anterior movement of the tibia, which would influence the tibiofemoral contact point. This would affect the kinematics of the TKR. We assessed the flexion gap parameters when the knee is distracted during implantation of a PCL-retaining TKR. Furthermore, the effects of PCL elevation (steep or flat) and collateral ligament releases on the flexion gap parameters were determined.
Methods
During a ligament-guided TKR procedure in 50 knees, the flexion gap was distracted with a double-spring tensor with 200N after the tibia had been cut. The flexion gap height, anterior tibial translation, and femoral rotation were measured intraoperatively using a CT-free navigation system.
Results
During flexion gap distraction, the greatest displacement was seen in anterior-posterior direction. Mean ratio between increase in gap height and tibial translation was 1 to 1.9, and was highest for knees with a steep PCL (1 to 2.3). Knees with a flat PCL and knees with a ligament release had a larger increase in PCL elevation when the gap was distracted.
Interpretation
When the PCL is tensioned, every extra mm that the flexion gap is distracted can be expected to move the tibia anteriorly by at least 1.7 mm (flat PCL), or more if there is a steep PCL. This changes the tibiofemoral contact point, which may have consequences for polyethylene wear.
doi:10.3109/17453674.2010.501743
PMCID: PMC2917571  PMID: 20809745
5.  Functional interface micromechanics of 11 en-bloc retrieved cemented femoral hip replacements 
Acta Orthopaedica  2010;81(3):308-317.
Background and purpose
Despite the longstanding use of micromotion as a measure of implant stability, direct measurement of the micromechanics of implant/bone interfaces from en bloc human retrievals has not been performed. The purpose of this study was to determine the stem-cement and cement-bone micromechanics of functionally loaded, en-bloc retrieved, cemented femoral hip components.
Methods
11 fresh frozen proximal femurs with cemented implants were retrieved at autopsy. Specimens were sectioned transversely into 10-mm slabs and fixed to a loading device where functional torsional loads were applied to the stem. A digital image correlation technique was used to document micromotions at stem-cement and cement-bone interfaces during loading.
Results
There was a wide range of responses with stem-cement micromotions ranging from 0.0006 mm to 0.83 mm (mean 0.17 mm, SD 0.29) and cement-bone micromotions ranging from 0.0022 mm to 0.73 mm (mean 0.092 mm, SD 0.22). There was a strong (linear-log) inverse correlation between apposition fraction and micromotion at the stem-cement interface (r2 = 0.71, p < 0.001). There was a strong inverse log-log correlation between apposition fraction at the cement-bone interface and micromotion (r2 = 0.85, p < 0.001). Components that were radiographically well-fixed had a relatively narrow range of micromotions at the stem-cement (0.0006–0.057 mm) and cement-bone (0.0022–0.029 mm) interfaces.
Interpretatation
Minimizing gaps at the stem-cement interface and encouraging bony apposition at the cement-bone interface would be clinically desirable. The cement-bone interface does not act as a bonded interface in actual use, even in radiographically well-fixed components. Rather, the interface is quite compliant, with sliding and opening motions between the cement and bone surfaces.
doi:10.3109/17453674.2010.480938
PMCID: PMC2876832  PMID: 20367421
6.  A sliding stem in revision total knee arthroplasty provides stability and reduces stress shielding 
Acta Orthopaedica  2010;81(3):337-343.
Background and purpose
In the reconstruction of unicondylar femoral bone defects with morselized bone grafts in revision total knee arthroplasty, a stem extension appears to be critical to obtain adequate mechanical stability. Whether stability is still assured by this reconstruction technique in bicondylar defects has not been assessed. The disadvantage of relatively stiff stem extensions is that bone resorption is promoted due to stress shielding. We therefore designed a stem that would permit axial sliding movements of the articulating part relative to the intramedullary stem.
Methods
This stem was used in the reconstruction with impaction bone grafting (IBG) of 5 synthetic distal femora with a bicondylar defect. A cyclically axial load was applied to the prosthetic condyles to assess the stability of the reconstruction. Radiostereometry was used to determine the migrations of the femoral component with a rigidly connected stem, a sliding stem, and no stem extension.
Results
We found a stable reconstruction of the bicondylar femoral defects with IBG in the case of a rigidly connected stem. After disconnecting the stem, the femoral component showed substantially more migrations. With a sliding stem, rotational migrations were similar to those of a rigidly connected stem. However, the sliding stem allowed proximal migration of the condylar component, thereby compressing the IBG.
Interpretation
The presence of a functional stem extension is important for the stability of a bicondylar reconstruction. A sliding stem provides adequate stability, while stress shielding is reduced because compressive contact forces are still transmitted to the distal femoral bone.
doi:10.3109/17453674.2010.483991
PMCID: PMC2876836  PMID: 20450422
7.  Finite element analysis of the effect of cementing concepts on implant stability and cement fatigue failure 
Acta Orthopaedica  2009;80(3):319-324.
Background and purpose Two contradictory cementing techniques (using an undersized stem versus a canal-filling stem) can both lead to excellent survival rates, a phenomenon known as the “French paradox”. Furthermore, previous studies have indicated that the type of bone supporting the cement mantle may affect implant survival. To further evaluate the mechanical consequences of variations in cementing technique, we studied the effect of implant size and type of bone supporting the cement mantle on the mechanical performance of cemented total hip arthroplasty, using finite element analysis.
Methods In a generic 2-dimensional plane-strain finite element model of a transverse section of a cemented total hip arthroplasty with a Charnley-Kerboull stem, we varied implant size and type of bone supporting the cement mantle. The models were subjected to 2 × 106 cycles of an alternating loading pattern of torque and a transverse load. During this loading history, we simulated cement fatigue crack formation and tracked rotational stability of the implant.
Results Canal-filling stems produced fewer cement cracks and less rotation than undersized stems. Cement mantles surrounded by trabecular bone produced more cement cracks and implant rotation than cement mantles surrounded by cortical bone.
Interpretation Our investigation provides a possible explanation for the good clinical results obtained with canal-filling Charnley-Kerboull implants. Our findings also indicate that inferior mechanical properties are obtained with these implants if the cement is supported by trabecular bone, which may be minimized by an optimal cementing technique.
doi:10.3109/17453670902947465
PMCID: PMC2823222  PMID: 19421913

Results 1-7 (7)