PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Small and similar amounts of micromotion in an anatomical stem and a customized cementless femoral stem in regular-shaped femurs 
Acta Orthopaedica  2014;85(2):152-158.
Background and purpose
High primary stability is important for long-term survival of uncemented femoral stems. Different stem designs are currently in use. The ABG-I is a well-documented anatomical stem with a press-fit design. The Unique stem is designed for a tight customized fit to the cortical bone of the upper femur. This implant was initially developed for patients with abnormal anatomy, but the concept can also be used in patients with normal femoral anatomy. We present 5-year radiostereometric analysis (RSA) results from a randomized study comparing the ABG-I anatomical stem with the Unique femoral stem.
Patients and methods
100 hips with regular upper femur anatomy were randomized to either the ABG-I stem or the Unique femoral stem. RSA measurements were performed postoperatively and after 3, 6, 12, 24, and 60 months.
Results
RSA measurements from 80 hips were available for analysis at the 5-year follow-up. Small amounts of movement were observed for both stems, with no statistically significant differences between the 2 types.
Interpretation
No improvement in long-term stability was found from using a customized stem design. However, no patients with abnormal geometry of the upper femur were included in this study.
doi:10.3109/17453674.2014.899846
PMCID: PMC3967257  PMID: 24650024
2.  A randomized study on migration of the Spectron EF and the Charnley flanged 40 cemented femoral components using radiostereometric analysis at 2 years 
Acta Orthopaedica  2011;82(5):538-544.
Background and purpose
We performed a randomized study to determine the migration patterns of the Spectron EF femoral stem and to compare them with those of the Charnley stem, which is regarded by many as the gold standard for comparison of implants due to its extensive documentation.
Patients and methods
150 patients with a mean age of 70 years were randomized, single-blinded, to receive either a cemented Charnley flanged 40 monoblock, stainless steel, vaquasheen surface femoral stem with a 22.2-mm head (n = 30) or a cemented Spectron EF modular, matte, straight, collared, cobalt-chrome femoral stem with a 28-mm femoral head and a roughened proximal third of the stem (n = 120). The patients were followed with repeated radiostereometric analysis for 2 years to assess migration.
Results
At 2 years, stem retroversion was 2.3° and 0.7° (p < 0.001) and posterior translation was 0.44 mm and 0.17 mm (p = 0.002) for the Charnley group (n = 26) and the Spectron EF group (n = 74), respectively. Subsidence was 0.26 mm for the Charnley and 0.20 mm for the Spectron EF (p = 0.5).
Interpretation
The Spectron EF femoral stem was more stable than the Charnley flanged 40 stem in our study when evaluated at 2 years. In a report from the Norwegian arthroplasty register, the Spectron EF stem had a higher revision rate due to aseptic loosening beyond 5 years than the Charnley. Initial stability is not invariably related to good long-term results. Our results emphasize the importance of prospective long-term follow-up of prosthetic implants in clinical trials and national registries and a stepwise introduction of implants.
doi:10.3109/17453674.2011.618914
PMCID: PMC3242949  PMID: 21895504
3.  Periprosthetic bone loss after insertion of an uncemented, customized femoral stem and an uncemented anatomical stem 
Acta Orthopaedica  2011;82(4):410-416.
Background and purpose
Customized femoral stems are designed to have a perfect fit and fill in the femur in order to achieve physiological load transfer and minimize stress shielding. Dual-energy X-ray absorptiometry (DXA) is regarded as an accurate method for detection of small alterations in bone mineral density (BMD) around hip prostheses. We present medium-term DXA results from a randomized study comparing a customized and an anatomical femoral stem.
Methods
100 hips were randomized to receive either the anatomical ABG-I stem or the Unique customized femoral stem, both uncemented. DXA measurements were conducted postoperatively and after 3, 6, 12, 24, 36, and 60 months, and BMD was computed for each of the 7 Gruen zones in the proximal femur.
Results
Results from 87 patients were available for analysis. 78 completed the 5-year follow-up: 35 patients in the ABG group and 43 patients in the Unique group. In both groups, we found the greatest degree of bone loss in the proximal Gruen zones. In zone 1, there was 15% reduction in BMD in the ABG-I group and 14% reduction in the Unique group. In zone 7, the reduction was 28% in the ABG-I group and 27% in the Unique group. The only statistically significant difference between the groups was found in Gruen zone 4, which is distal to the tip of the stem, with 1.6% reduction in BMD in the ABG-I group and 9.7% reduction in the Unique group (p = 0.003).
Interpretation
5-year DXA results showed that because of stress-shielding, proximal bone loss could not be avoided—either for the anatomical ABG-I stem or for the customized Unique stem.
doi:10.3109/17453674.2011.588860
PMCID: PMC3237029  PMID: 21668387
5.  Uncemented custom femoral components in hip arthroplasty 
Acta Orthopaedica  2010;81(4):427-435.
Background and purpose
We have developed an individually designed, uncemented femoral component for achievement of improved strain distribution and fixation to the bone, to make uncemented stems more applicable in femurs of abnormal size and shape, and to improve the joint mechanics. Here we describe the design of the implant and present the results of a prospective clinical study with at least 7 years of follow-up.
Patients and methods
The prostheses are produced by CAD-CAM technique. The design of the stem is based on CT information, and the neck design is based on the surgeon's planning of the center of rotation, femoral head offset, and leg length correction. The first-generation stem produced before 2001 had a proximal HA coating and a sand-blasted distal part that was down-scaled to avoid contact with compact bone. The second-generation stem had a porous coating beneath the HA layer and the distal part of the stem was polished.
The implant was used in 762 hips (614 patients) from 1995 until 2009. 191 of these hips were followed for 7 years and 83 others were followed for 10 years, and these hips are included in the present study. Mean age at surgery was 48 (20–65) years. Congenital dysplasia of the hip was the reason for osteoarthritis in 46% and 57% of the hips in respective groups. Merle d'Aubigné score was recorded in 152 and 75 hips in the two groups. Prostheses followed for 10 years, and almost all in the 7-year group, were first-generation stems.
Results
The 7- and 10-year cumulative revision rates were 1.1% and 2.4%, respectively, with stem revision for any reason as endpoint. The clinical results were similar at 7 and 10 years, with Merle d'Aubigné scores of 17. Intraoperative trochanteric fissures occurred in 2 of the 191 operations (1.0%); both healed after wiring. In hips followed for 7 years, 2 periprosthetic fractures occurred; exchange of the stem was necessary in both. One additional fracture occurred between 7 and 10 years, and it was treated successfully with osteosynthesis. The rate of dislocation was 1.6% and 2.4%, respectively. There was no radiographic loosening at follow-up.
Interpretation
Use of a custom femoral stem gives a reliable fixation and promising medium-term clinical results in femurs of normal and abnormal shape and dimension. The individual design, which enables optimized joint mechanics, gives a low risk of mechanical complications.
doi:10.3109/17453674.2010.501748
PMCID: PMC2917564  PMID: 20809741

Results 1-5 (5)