PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-21 (21)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Solution structure of an arsenate reductase-related protein, YffB, from Brucella melitensis, the etiological agent responsible for brucellosis 
Acta Crystallographica Section F  2011;67(Pt 9):1129-1136.
B. melitensis is a NIAID Category B microorganism that is responsible for brucellosis and is a potential agent for biological warfare. Here, the solution structure of the 116-residue arsenate reductase-related protein Bm-YffB (BR0369) from this organism is reported.
Brucella melitensis is the etiological agent responsible for brucellosis. Present in the B. melitensis genome is a 116-residue protein related to arsenate reductases (Bm-YffB; BR0369). Arsenate reductases (ArsC) convert arsenate ion (H2AsO4 −), a compound that is toxic to bacteria, to arsenite ion (AsO2 −), a product that may be efficiently exported out of the cell. Consequently, Bm-YffB is a potential drug target because if arsenate reduction is the protein’s major biological function then disabling the cell’s ability to reduce arsenate would make these cells more sensitive to the deleterious effects of arsenate. Size-exclusion chromatography and NMR spectroscopy indicate that Bm-YffB is a monomer in solution. The solution structure of Bm-YffB (PDB entry 2kok) shows that the protein consists of two domains: a four-stranded mixed β-sheet flanked by two α-helices on one side and an α-helical bundle. The α/β domain is characteristic of the fold of thioredoxin-like proteins and the overall structure is generally similar to those of known arsenate reductases despite the marginal sequence similarity. Chemical shift perturbation studies with 15N-labeled Bm-YffB show that the protein binds reduced glutathione at a site adjacent to a region similar to the HX 3CX 3R catalytic sequence motif that is important for arsenic detoxification activity in the classical arsenate-reductase family of proteins. The latter observation supports the hypothesis that the ArsC-YffB family of proteins may function as glutathione-dependent thiol reductases. However, comparison of the structure of Bm-YffB with the structures of proteins from the classical ArsC family suggest that the mechanism and possibly the function of Bm-YffB and other related proteins (ArsC-YffB) may differ from those of the ArsC family of proteins.
doi:10.1107/S1744309111006336
PMCID: PMC3169414  PMID: 21904062
arsenate reductases; Brucella melitensis; YffB; brucellosis
2.  Solution-state NMR structure and biophysical characterization of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis  
Acta Crystallographica Section F  2011;67(Pt 9):1148-1153.
One third of the world’s human population is infected with M. tuberculosis, the etiological agent responsible for tuberculosis (TB). Here, the solution structure of the small iron-binding protein from this organism, rubredoxin B (Rv3250c), is reported in the zinc-substituted form.
Owing to the evolution of multi-drug-resistant and extremely drug-resistant Mycobacterium tuberculosis strains, there is an urgent need to develop new antituberculosis strategies to prevent TB epidemics in the industrial world. Among the potential new drug targets are two small nonheme iron-binding proteins, rubredoxin A (Rv3251c) and rubredoxin B (Rv3250c), which are believed to play a role in electron-transfer processes. Here, the solution structure and biophysical properties of one of these two proteins, rubredoxin B (Mt-RubB), determined in the zinc-substituted form are reported. The zinc-substituted protein was prepared by expressing Mt-RubB in minimal medium containing excess zinc acetate. Size-exclusion chromatography and NMR spectroscopy indicated that Mt-RubB was a monomer in solution. The structure (PDB entry 2kn9) was generally similar to those of other rubredoxins, containing a three-stranded anti­parallel β-sheet (β2–β1–β3) and a metal tetrahedrally coordinated to the S atoms of four cysteine residues (Cys9, Cys12, Cys42 and Cys45). The first pair of cysteine residues is at the C-terminal end of the first β-­strand and the second pair of cysteine residues is towards the C-terminal end of the loop between β2 and β3. The structure shows the metal buried deeply within the protein, an observation that is supported by the inability to remove the metal with excess EDTA at room temperature. Circular dichroism spectroscopy shows that this stability extends to high temperature, with essentially no change being observed in the CD spectrum of Mt-RubB upon heating to 353 K.
doi:10.1107/S1744309111008189
PMCID: PMC3169417  PMID: 21904065
rubredoxin B; Mycobacterium tuberculosis; Rv3250c
3.  Structural genomics of infectious disease drug targets: the SSGCID 
Acta Crystallographica Section F  2011;67(Pt 9):979-984.
An introduction and overview of the focus, goals and overall mission of the Seattle Structural Genomics Center for Infectious Disease (SSGCID) is given.
The Seattle Structural Genomics Center for Infectious Disease (SSGCID) is a consortium of researchers at Seattle BioMed, Emerald BioStructures, the University of Washington and Pacific Northwest National Laboratory that was established to apply structural genomics approaches to drug targets from infectious disease organisms. The SSGCID is currently funded over a five-year period by the National Institute of Allergy and Infectious Diseases (NIAID) to determine the three-dimensional structures of 400 proteins from a variety of Category A, B and C pathogens. Target selection engages the infectious disease research and drug-therapy communities to identify drug targets, essential enzymes, virulence factors and vaccine candidates of biomedical relevance to combat infectious diseases. The protein-expression systems, purified proteins, ligand screens and three-dimensional structures produced by SSGCID con­stitute a valuable resource for drug-discovery research, all of which is made freely available to the greater scientific community. This issue of Acta Crystallographica Section F, entirely devoted to the work of the SSGCID, covers the details of the high-throughput pipeline and presents a series of structures from a broad array of pathogenic organisms. Here, a background is provided on the structural genomics of infectious disease, the essential components of the SSGCID pipeline are discussed and a survey of progress to date is presented.
doi:10.1107/S1744309111029204
PMCID: PMC3169389  PMID: 21904037
SSGCID; structural genomics; structure-based drug design; infectious diseases; pathogens; emerging and re-emerging diseases
4.  Structure of a Trypanosoma brucei α/β-hydrolase fold protein with unknown function 
Acta Crystallographica Section F  2008;64(Pt 6):474-478.
T. brucei gene Tb10.6k15.0140 codes for an α/β-hydrolase fold protein of unknown function. The 2.2 Å crystal structure shows that members of this sequence family retain a conserved Ser residue at the expected site of a catalytic nucleophile, but that trypanosomatid sequences lack structural homologs for the other expected residues of the catalytic triad.
The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the α/β-hydrolase fold family. Structural superposition onto representative α/β-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similarity at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands β6 and β7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family.
doi:10.1107/S174430910801141X
PMCID: PMC2496854  PMID: 18540054
Tbru020260AAA; Trypanosoma brucei; α/β-hydrolase fold proteins
5.  Structure of ribose 5-phosphate isomerase from Plasmodium falciparum  
Acta Crystallographica Section F  2006;62(Pt 5):427-431.
The crystal structure of ribose 5-phosphate isomerase from P. falciparum has been determined at 2.09 Å resolution. The structure is very similar to those of RpiA from other species, but is in some ways more similar to bacterial homologs than to those from higher eukaryotes.
The structure of ribose 5-phosphate isomerase from Plasmodium falciparum, PFE0730c, has been determined by molecular replacement at 2.09 Å resolution. The enzyme, which catalyzes the isomerization reaction that interconverts ribose 5-phosphate and ribulose 5-phosphate, is a member of the pentose phosphate pathway. The P. falciparum enzyme belongs to the ribose 5-­phosphate isomerase A family, Pfam family PF06562 (DUF1124), and is structurally similar to other members of the family.
doi:10.1107/S1744309106010876
PMCID: PMC2219984  PMID: 16682767
ribose 5-phosphate isomerase
6.  Structure of the conserved hypothetical protein MAL13P1.257 from Plasmodium falciparum  
Acta Crystallographica Section F  2006;62(Pt 3):180-185.
The crystal structure of a conserved hypothetical protein, MAL13P1.257 from P. falciparum, has been determined at 2.17 Å resolution. The structure represents a new protein fold and is the first structural representative for Pfam sequence family PF05907.
The structure of a conserved hypothetical protein, PlasmoDB sequence MAL13P1.257 from Plasmodium falciparum, Pfam sequence family PF05907, has been determined as part of the structural genomics effort of the Structural Genomics of Pathogenic Protozoa consortium. The structure was determined by multiple-wavelength anomalous dispersion at 2.17 Å resolution. The structure is almost entirely β-sheet; it consists of 15 β-strands and one short 310-helix and represents a new protein fold. The packing of the two monomers in the asymmetric unit indicates that the biological unit may be a dimer.
doi:10.1107/S1744309106005847
PMCID: PMC2197184  PMID: 16511296
MAL13P1.257
7.  Structure of a Nudix hydrolase (MutT) in the Mg2+-­bound state from Bartonella henselae, the bacterium responsible for cat scratch fever 
B. henselae is the etiological agent responsible for cat scratch fever (bartonellosis). The crystal structure of the smaller of the two Nudix hydrolases encoded in the genome of B. henselae, Bh-MutT, was determined to 2.1 Å resolution.
Cat scratch fever (also known as cat scratch disease and bartonellosis) is an infectious disease caused by the proteobacterium Bartonella henselae following a cat scratch. Although the infection usually resolves spontaneously without treatment in healthy adults, bartonellosis may lead to severe complications in young children and immunocompromised patients, and there is new evidence suggesting that B. henselae may be associated with a broader range of clinical symptoms then previously believed. The genome of B. henselae contains genes for two putative Nudix hydrolases, BH02020 and BH01640 (KEGG). Nudix proteins play an important role in regulating the intracellular concentration of nucleotide cofactors and signaling molecules. The amino-acid sequence of BH02020 is similar to that of the prototypical member of the Nudix superfamily, Escherichia coli MutT, a protein that is best known for its ability to neutralize the promutagenic compound 7,8-dihydro-8-oxoguanosine triphos­phate. Here, the crystal structure of BH02020 (Bh-MutT) in the Mg2+-bound state was determined at 2.1 Å resolution (PDB entry 3hhj). As observed in all Nudix hydrolase structures, the α-helix of the highly conserved ‘Nudix box’ in Bh-­MutT is one of two helices that sandwich a four-stranded mixed β-sheet with the central two β-strands parallel to each other. The catalytically essential divalent cation observed in the Bh-MutT structure, Mg2+, is coordinated to the side chains of Glu57 and Glu61. The structure is not especially robust; a temperature melt obtained using circular dichroism spectroscopy shows that Bh-­MutT irreversibly unfolds and precipitates out of solution upon heating, with a T m of 333 K.
doi:10.1107/S1744309111011559
PMCID: PMC3169405  PMID: 21904053
Nudix hydrolases; Bartonella henselae; MutT; cat scratch fever
8.  Structure of thymidylate kinase from Ehrlichia chaffeensis  
A 2.15 Å resolution apo structure of thymidylate kinase from E. chaffeensis is reported.
The enzyme thymidylate kinase phosphorylates the substrate thymidine 5′-­phosphate (dTMP) to form thymidine 5′-diphosphate (dTDP), which is further phosphorylated to dTTP for incorporation into DNA. Ehrlichia chaffeensis is the etiologic agent of human monocytotropic erlichiosis (HME), a potentially life-threatening tick-borne infection. HME is endemic in the United States from the southern states up to the eastern seaboard. HME is transmitted to humans via the lone star tick Amblyomma americanum. Here, the 2.15 Å resolution crystal structure of thymidylate kinase from E. chaffeensis in the apo form is presented.
doi:10.1107/S174430911101493X
PMCID: PMC3169407  PMID: 21904055
thymidine 5′-phosphate; thymidine 5′-diphosphate; Ehrlichia chaffeensis; human monocytotropic erlichiosis; thymidylate kinases
9.  Structure of triosephosphate isomerase from Cryptosporidium parvum  
The crystal structure of the ubiquitous glycolytic enzyme triosephosphate isomerase from C. parvum in the open-loop conformation was determined at a resolution of 1.55 Å.
Cryptosporidium parvum is one of several Cryptosporidium spp. that cause the parasitic infection cryptosporidiosis. Cryptosporidiosis is a diarrheal infection that is spread via the fecal–oral route and is commonly caused by contaminated drinking water. Triosephosphate isomerase is an enzyme that is ubiquitous to all organisms that perform glycolysis. Triosephosphate isomerase catalyzes the formation of glyceraldehyde 3-phosphate from dihydroxyacetone phosphate, which is a critical step to ensure the maximum ATP production per glucose molecule. In this paper, the 1.55 Å resolution crystal structure of the open-loop form of triosephosphate isomerase from C. parvum Iowa II is presented. An unidentified electron density was found in the active site.
doi:10.1107/S1744309111019178
PMCID: PMC3169408  PMID: 21904056
glycolysis; triosephosphate; triosephosphate isomerases; metabolism; Cryptosporidium parvum
10.  BrabA.11339.a: anomalous diffraction and ligand binding guide towards the elucidation of the function of a ‘putative β-lactamase-like protein’ from Brucella melitensis  
The structure of a β-lactamase-like protein from B. melitensis was solved independently using two data sets with anomalous signal. Anomalous Fourier maps could confirm the identity of two metal ions in the active site. AMP-bound and GMP-bound structures provide hints to the possible function of the protein.
The crystal structure of a β-lactamase-like protein from Brucella melitensis was initially solved by SAD phasing from an in-house data set collected on a crystal soaked with iodide. A high-resolution data set was collected at a synchroton at the Se edge wavelength, which also provided an independent source of phasing using a small anomalous signal from metal ions in the active site. Comparisons of anomalous peak heights at various wavelengths allowed the identification of the active-site metal ions as manganese. In the native data set a partially occupied GMP could be identified. When co-crystallized with AMPPNP or GMPPNP, clear density for the hydrolyzed analogs was observed, providing hints to the function of the protein.
doi:10.1107/S1744309111010220
PMCID: PMC3169410  PMID: 21904058
Seattle Structural Genomics Center for Infectious Disease; iodide; SAD phasing; anomalous diffraction; Brucella melitensis; lactamase; Phn
11.  Structure of 3-ketoacyl-(acyl-carrier-protein) reductase from Rickettsia prowazekii at 2.25 Å resolution 
The R. prowazekii 3-ketoacyl-(acyl-carrier-protein) reductase is similar to those from other prokaryotic pathogens but differs significantly from the mammalian orthologue, strengthening its case as a potential drug target.
Rickettsia prowazekii, a parasitic Gram-negative bacterium, is in the second-highest biodefense category of pathogens of the National Institute of Allergy and Infectious Diseases, but only a handful of structures have been deposited in the PDB for this bacterium; to date, all of these have been solved by the SSGCID. Owing to its small genome (about 800 protein-coding genes), it relies on the host for many basic biosynthetic processes, hindering the identification of potential antipathogenic drug targets. However, like many bacteria and plants, its metabolism does depend upon the type II fatty-acid synthesis (FAS) pathway for lipogenesis, whereas the predominant form of fatty-acid biosynthesis in humans is via the type I pathway. Here, the structure of the third enzyme in the FAS pathway, 3-­ketoacyl-(acyl-carrier-protein) reductase, is reported at a resolution of 2.25 Å. Its fold is highly similar to those of the existing structures from some well characterized pathogens, such as Mycobacterium tuberculosis and Burkholderia pseudomallei, but differs significantly from the analogous mammalian structure. Hence, drugs known to target the enzymes of pathogenic bacteria may serve as potential leads against Rickettsia, which is responsible for spotted fever and typhus and is found throughout the world.
doi:10.1107/S1744309111030673
PMCID: PMC3169412  PMID: 21904060
Rickettsia prowazekii; 3-oxoacyl-(acyl-carrier-protein) reductase; FabG; epidemic typhus; infectious diseases; SSGCID
12.  Structure of fumarate hydratase from Rickettsia prowazekii, the agent of typhus and suspected relative of the mitochondria 
Fumarate hydratase is an enzyme of the tricarboxylic acid cycle, one of the metabolic pathways characteristic of the mitochondria. The structure of R. prowazekii class II fumarate hydratase is reported at 2.4 Å resolution and is compared with the available structure of the human homolog.
Rickettsiae are obligate intracellular parasites of eukaryotic cells that are the causative agents responsible for spotted fever and typhus. Their small genome (about 800 protein-coding genes) is highly conserved across species and has been postulated as the ancestor of the mitochondria. No genes that are required for glycolysis are found in the Rickettsia prowazekii or mitochondrial genomes, but a complete set of genes encoding components of the tricarboxylic acid cycle and the respiratory-chain complex is found in both. A 2.4 Å resolution crystal structure of R. prowazekii fumarate hydratase, an enzyme catalyzing the third step of the tricarboxylic acid cycle pathway that ultimately converts phospho­enolpyruvate into succinyl-CoA, has been solved. A structure alignment with human mitochondrial fumarate hydratase highlights the close similarity between R. prowazekii and mitochondrial enzymes.
doi:10.1107/S174430911102690X
PMCID: PMC3169413  PMID: 21904061
tricarboxylic acid cycle; mitochondria; Rickettsia; typhus; fumarate hydratases; lyases
13.  Comparative analysis of glutaredoxin domains from bacterial opportunistic pathogens 
NMR structures of the glutaredoxin (GLXR) domains from Br. melitensis and Ba. henselae have been determined as part of the SSGCID initiative. Comparison of the domains with known structures reveals overall structural similarity between these proteins and previously determined E. coli GLXR structures, with minor changes associated with the position of helix 1 and with regions that diverge from similar structures found in the closest related human homolog.
Glutaredoxin proteins (GLXRs) are essential components of the glutathione system that reductively detoxify substances such as arsenic and peroxides and are important in the synthesis of DNA via ribonucleotide reductases. NMR solution structures of glutaredoxin domains from two Gram-negative opportunistic pathogens, Brucella melitensis and Bartonella henselae, are presented. These domains lack the N-terminal helix that is frequently present in eukaryotic GLXRs. The conserved active-site cysteines adopt canonical proline/tyrosine-stabilized geometries. A difference in the angle of α-helix 2 relative to the β-­sheet surface and the presence of an extended loop in the human sequence suggests potential regulatory regions and/or protein–protein interaction motifs. This observation is consistent with mutations in this region that suppress defects in GLXR–ribonucleotide reductase interactions. These differences between the human and bacterial forms are adjacent to the dithiol active site and may permit species-selective drug design.
doi:10.1107/S1744309111012346
PMCID: PMC3169416  PMID: 21904064
glutaredoxins; metal detoxification; reactive oxygen species; ribonucleotide reductases; Brucella melitensis; Bartonella henselae; cat-scratch fever; Malta fever; thioredoxin fold
14.  Structure of the cystathionine γ-synthase MetB from Mycobacterium ulcerans  
Cystathionine γ-synthase (CGS) is a transferase that catalyzes the reaction between O 4-succinyl-l-homoserine and l-cysteine to produce l-­cystathionine and succinate. The crystal structure of CGS from M. ulcerans is presented covalently linked to the cofactor pyridoxal phosphate (PLP). A second structure contains PLP as well as a highly ordered HEPES molecule in the active site acting as a pseudo-ligand. This is the first structure ever reported from the pathogen M. ulcerans.
Cystathionine γ-synthase (CGS) is a transulfurication enzyme that catalyzes the first specific step in l-methionine biosynthesis by the reaction of O 4-succinyl-l-­homoserine and l-cysteine to produce l-cystathionine and succinate. Controlling the first step in l-methionine biosythesis, CGS is an excellent potential drug target. Mycobacterium ulcerans is a slow-growing mycobacterium that is the third most common form of mycobacterial infection, mainly infecting people in Africa, Australia and Southeast Asia. Infected patients display a variety of skin ailments ranging from indolent non-ulcerated lesions as well as ulcerated lesions. Here, the crystal structure of CGS from M. ulcerans covalently linked to the cofactor pyridoxal phosphate (PLP) is reported at 1.9 Å resolution. A second structure contains PLP as well as a highly ordered HEPES molecule in the active site acting as a pseudo-ligand. These results present the first structure of a CGS from a mycobacterium and allow comparison with other CGS enzymes. This is also the first structure reported from the pathogen M. ulcerans.
doi:10.1107/S1744309111029575
PMCID: PMC3169418  PMID: 21904066
pyridoxal phosphate; l-methionine; O4-succinyl-l-homoserine; l-cysteine; l-cystathionine; AAT-I superfamily; Mycobacteria ulcerans; cystathionine γ-synthase
15.  Expression of proteins in Escherichia coli as fusions with maltose-binding protein to rescue non-expressed targets in a high-throughput protein-expression and purification pipeline 
The rescue of protein-expression levels by cloning genes into MBP-fusion vector is described.
Despite recent advances, the expression of heterologous proteins in Escherichia coli for crystallization remains a nontrivial challenge. The present study investigates the efficacy of maltose-binding protein (MBP) fusion as a general strategy for rescuing the expression of target proteins. From a group of sequence-verified clones with undetectable levels of protein expression in an E. coli T7 expression system, 95 clones representing 16 phylogenetically diverse organisms were selected for recloning into a chimeric expression vector with an N-terminal histidine-tagged MBP. PCR-amplified inserts were annealed into an identical ligation-independent cloning region in an MBP-fusion vector and were analyzed for expression and solubility by high-throughput nickel-affinity binding. This approach yielded detectable expression of 72% of the clones; soluble expression was visible in 62%. However, the solubility of most proteins was marginal to poor upon cleavage of the MBP tag. This study offers large-scale evidence that MBP can improve the soluble expression of previously non-expressing proteins from a variety of eukaryotic and prokaryotic organisms. While the behavior of the cleaved proteins was disappointing, further refinements in MBP tagging may permit the more widespread use of MBP-fusion proteins in crystallographic studies.
doi:10.1107/S1744309111022159
PMCID: PMC3169393  PMID: 21904041
structural genomics; high throughput; maltose-binding protein; MBP fusion; protein expression; SSGCID
16.  High-throughput protein production and purification at the Seattle Structural Genomics Center for Infectious Disease 
An overview of the standard SSGCID protein-purification protocol is given and success rates and cleavage alternatives are discussed.
The establishment of an efficient and reliable protein-purification pipeline is essential for the success of structural genomic projects. The SSGCID Protein Purification Group at the University of Washington (UW-PPG) has established a robust protein-purification pipeline designed to purify 400 proteins per year at a rate of eight purifications per week. The pipeline was implemented using two ÄKTAexplorer 100s and four ÄKTAprimes to perform immobilized metal-affinity chromatography (IMAC) and size-exclusion chromatography. Purifications were completed in a period of 5 d and yielded an average of 53 mg highly purified protein. This paper provides a detailed description of the methods used to purify, characterize and store SSGCID proteins. Some of the purified proteins were treated with 3C protease, which was expressed and purified by UW-PPG using a similar protocol, to cleave non-native six-histidine tags. The cleavage was successful in 94% of 214 attempts. Cleaved proteins yielded 2.9% more structures than uncleaved six-histidine-tagged proteins. This 2.9% improvement may seem small, but over the course of the project the structure output from UW-PPG is thus predicted to increase from 260 structures to 318 structures. Therefore, the outlined protocol with 3C cleavage and subtractive IMAC has been shown to be a highly efficient method for the standardized purification of recombinant proteins for structure determination via X-ray crystallography.
doi:10.1107/S1744309111018367
PMCID: PMC3169394  PMID: 21904042
protein production; purification; immobilized metal-affinity chromatography; size-exclusion chromatography; structural genomics; 3C protease; enzymatic cleavage
17.  Structures of phosphopantetheine adenylyltransferase from Burkholderia pseudomallei  
Phosphopantetheine adenylyltransferase (PPAT) reversibly converts ATP and 4′-phosphopantetheine into dephospho-coenzyme A and pyrophosphate. Crystal structures are presented of PPAT from B. pseudomallei, the pathogenic bacterium that causes melioidosis.
Phosphopantetheine adenylyltransferase (PPAT) catalyzes the fourth of five steps in the coenzyme A biosynthetic pathway, reversibly transferring an adenylyl group from ATP onto 4′-phosphopantetheine to yield dephospho-coenzyme A and pyrophosphate. Burkholderia pseudomallei is a soil- and water-borne pathogenic bacterium and the etiologic agent of melioidosis, a potentially fatal systemic disease present in southeast Asia. Two crystal structures are presented of the PPAT from B. pseudomallei with the expectation that, because of the importance of the enzyme in coenzyme A biosynthesis, they will aid in the search for defenses against this pathogen. A crystal grown in ammonium sulfate yielded a 2.1 Å resolution structure that contained dephospho-coenzyme A with partial occupancy. The overall structure and ligand-binding interactions are quite similar to other bacterial PPAT crystal structures. A crystal grown at low pH in the presence of coenzyme A yielded a 1.6 Å resolution structure in the same crystal form. However, the experimental electron density was not reflective of fully ordered coenzyme A, but rather was only reflective of an ordered 4′-diphosphopantetheine moiety.
doi:10.1107/S1744309111004349
PMCID: PMC3169398  PMID: 21904046
biosynthesis; CoaD; coenzyme A; Burkholderia; infectious diseases; melioidosis; nucleotidyltransferases; pantetheine-phosphate adenylyltransferase; phosphopanthetheine adenylyltransferase; PPAT; Rossman fold
18.  Structures of a putative ζ-class glutathione S-transferase from the pathogenic fungus Coccidioides immitis  
The pathogenic fungus C. immitis causes coccidioidomycosis, a potentially fatal disease. Here, apo and glutathione-bound crystal structures of a previously uncharacterized protein from C. immitis that appears to be a ζ-class glutathione S-transferase are presented.
Coccidioides immitis is a pathogenic fungus populating the southwestern United States and is a causative agent of coccidioidomycosis, sometimes referred to as Valley Fever. Although the genome of this fungus has been sequenced, many operons are not properly annotated. Crystal structures are presented for a putative uncharacterized protein that shares sequence similarity with ζ-class glutathione S-transferases (GSTs) in both apo and glutathione-bound forms. The apo structure reveals a nonsymmetric homodimer with each protomer comprising two subdomains: a C-terminal helical domain and an N-terminal thioredoxin-like domain that is common to all GSTs. Half-site binding is observed in the glutathione-bound form. Considerable movement of some components of the active site relative to the glutathione-free form was observed, indicating an induced-fit mechanism for cofactor binding. The sequence homology, structure and half-site occupancy imply that the protein is a ζ-class glutathione S-transferase, a maleylacetoacetate isomerase (MAAI).
doi:10.1107/S1744309111009493
PMCID: PMC3169399  PMID: 21904047
Coccidioides immitis; coccidioidomycosis; dichloroacetic acid; glutathione S-transferase; maleylacetoacetate isomerase; phenylalanine and tyrosine metabolism; thioredoxin-like fold; Valley Fever
19.  Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening 
The first crystal structure is reported of a glutaryl-CoA dehydrogenase in the apo state without flavin adenine dinucleotide cofactor bound. Additional structures with small molecules complexed in the catalytic active site were obtained by fragment-based screening.
Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl-CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD-binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment-based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side-chain perturbations to key active-site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small-molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.
doi:10.1107/S1744309111014436
PMCID: PMC3169403  PMID: 21904051
Burkholderia pseudomallei; glutaryl-CoA dehydrogenase; glutaric acidemia; fragment screening; flavoproteins; pantothenate; glutaryl-CoA; crotonyl-CoA; flavin adenine dinucleotide; SSGCID
20.  NMR structure of an acyl-carrier protein from Borrelia burgdorferi  
The high-resolution NMR structure of the acyl-carrier protein from the pathogen B. burgdorferi determined to a r.m.s. deviation of 0.4 Å over the protein backbone is reported. The NMR structure was determined using multidimensional NMR spectroscopy and consists of four α-helices and two 310-helices. Structural comparison reveals that this protein is highly similar to the acyl-carrier protein from A. aeolicus.
Nearly complete resonance assignment and the high-resolution NMR structure of the acyl-carrier protein from Borrelia burgdorferi, a target of the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure-determination pipeline, are reported. This protein was chosen as a potential target for drug-discovery efforts because of its involvement in fatty-acid biosynthesis, an essential metabolic pathway, in bacteria. It was possible to assign >98% of backbone resonances and >92% of side-chain resonances using multidimensional NMR spectroscopy. The NMR structure was determined to a backbone r.m.s.d. of 0.4 Å and contained four α-helices and two 310-helices. A structure-homology search revealed that this protein is highly similar to the acyl-carrier protein from Aquifex aeolicus.
doi:10.1107/S1744309111004386
PMCID: PMC3169415  PMID: 21904063
NMR; acyl-carrier proteins; Borrelia burgdorferi
21.  The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix 
The crystal structure of a phosphatidylethanolamine-binding protein from P. vivax, a homolog of Raf-kinase inhibitor protein (RKIP), has been solved to a resolution of 1.3 Å. The inferred interaction surface near the anion-binding site is found to include a distinctive left-handed α-helix.
The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed α-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family.
doi:10.1107/S1744309107007580
PMCID: PMC2330187  PMID: 17329808
phosphatidylethanolamine-binding protein; Plasmodium vivax

Results 1-21 (21)