Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  Co-crystals of 3-de­oxy-3-fluoro-α-d-glucopyran­ose and 3-de­oxy-3-fluoro-β-d-glucopyran­ose 
3-De­oxy-3-fluoro-d-glucopyran­ose crystallizes from acetone to give a unit cell containing two crystallographically independent mol­ecules. One of these mol­ecules (at site A) is structurally homogeneous and corresponds to 3-de­oxy-3-fluoro-β-d-glucopyran­ose, C6H11FO5, (I). The second mol­ecule (at site B) is structurally heterogeneous and corresponds to a mixture of (I) and 3-de­oxy-3-fluoro-α-d-glucopyran­ose, (II); treatment of the diffraction data using partial-occupancy oxygen at the anomeric center gave a high-quality packing model with an occupancy ratio of 0.84:0.16 for (II):(I) at site B. The mixture of α- and β-anomers at site B appears to be accommodated in the lattice because hydrogen-bonding partners are present to hydrogen bond to the anomeric OH group in either an axial or equatorial orientation. Cremer–Pople analysis of (I) and (II) shows the pyranosyl ring of (II) to be slightly more distorted than that of (I) [θ(I) = 3.85 (15)° and θ(II) = 6.35 (16)°], but the general direction of distortion is similar in both structures [ϕ(I) = 67 (2)° (B C1,C4) and ϕ(II) = 26.0 (15)° (C3 TB C1); B = boat conformation and TB = twist-boat conformation]. The exocyclic hy­droxy­methyl (–CH2OH) conformation is gg (gauche–gauche) (H5 anti to O6) in both (I) and (II). Structural comparisons of (I) and (II) to related unsubstituted, de­oxy and fluorine-substituted monosaccharides show that the gluco ring can assume a wide range of distorted chair structures in the crystalline state depending on ring substitution patterns.
PMCID: PMC3089378  PMID: 21051824
2.  4-De­oxy-4-fluoro-β-d-gluco­pyranose 
4-De­oxy-4-fluoro-β-d-glucopyran­ose, C6H11FO5, (I), crystallizes from water at room temperature in a slightly distorted 4 C 1 chair con­formation. The observed chair distortion differs from that observed in β-d-glucopyran­ose [Kouwijzer, van Eijck, Kooijman & Kroon (1995 ▶). Acta Cryst. B51, 209–220], (II), with the former skewed toward a B C3,O5 (boat) conformer and the latter toward an O5 TB C2 (twist–boat) conformer, based on Cremer–Pople analysis. The exocyclic hy­droxy­methyl group conformations in (I) and (II) are similar; in both cases, the O—C—C—O torsion angle is ∼−60° (gg con­former). Inter­molecular hydrogen bonding in the crystal structures of (I) and (II) is conserved in that identical patterns of donors and acceptors are observed for the exocyclic substituents and the ring O atom of each monosaccharide. Inspection of the crystal packing structures of (I) and (II) reveals an essentially identical packing configuration.
PMCID: PMC3089016  PMID: 20921614

Results 1-2 (2)