PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Advantages of functional single-cell isolation method over standard agar plate dilution method as a tool for studying denitrifying bacteria in rice paddy soil 
AMB Express  2012;2:50.
We recently established a method for isolating functional single cells from environmental samples using a micromanipulator (Functional single-cell (FSC) isolation), and applied it to the study of denitrifying bacteria in rice paddy soil (Ashida et al. 2010. Appl Microbiol Biotechnol 85:1211–1217). To further examine the advantages and possible disadvantages of the FSC method, we isolated denitrifying bacteria from the same rice paddy soil sample using both FSC and standard agar plate dilution (APD) methods and compared in this study. The proportion of denitrifying bacteria in the total isolates was more than 6-fold larger with FSC isolation (57.1%) compared with the APD method (9.2%). Denitrifying bacteria belonging to Alphaproteobacteria and Bacilli were commonly isolated using both methods, whereas those belonging to Betaproteobacteria, which had been found to be active in the denitrification-inductive paddy soil, were isolated only with the FSC method. On the other hand, Actinobacteria were only isolated using the APD method. The mean potential denitrification activity of the FSC isolates was higher than that of the APD isolates. Overall, FSC isolation was confirmed to be an excellent method for studying denitrifying bacteria compared with the standard agar plate dilution method.
doi:10.1186/2191-0855-2-50
PMCID: PMC3488030  PMID: 22985609
16S rRNA gene; Denitrifying bacteria; Functional single-cell isolation; Phylogenetic analysis; Rice paddy soil
2.  Phyllosphere yeasts rapidly break down biodegradable plastics 
AMB Express  2011;1:44.
The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.
doi:10.1186/2191-0855-1-44
PMCID: PMC3293741  PMID: 22126328
Pseudozyma; Biodegradable plastic; Phyllosphere; Yeast

Results 1-2 (2)