Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Simultaneous bioethanol distillery wastewater treatment and xylanase production by the phyllosphere yeast Pseudozyma antarctica GB-4(0) 
AMB Express  2015;5:36.
Bioethanol production using lignocellulosic biomass generates lignocellulosic bioethanol distillery wastewater (LBDW) that contains a large amount of xylose, making it a potential inexpensive source of xylose for biomaterials production. The main goal of this study was the production of useful enzymes from LBDW during treatment of this wastewater. In this study, we found that xylose strongly induced two yeast strains, Pseudozyma antarctica T-34 and GB-4(0), to produce novel xylanases, PaXynT and PaXynG, respectively. The nucleotide sequence of PaXynT [accession No. DF196774 (GAC73192.1)], obtained from the genome database of strain T-34 using its N-terminal amino acid sequence, was 91% identical to that of PaXynG (accession No. AB901085), and the deduced amino acid sequence is 98% identical. The specific activities of the purified PaXynT and PaXynG were about 52 U/mg. The optimal pH and temperature for both enzymes’ activities were 5.2 and 50°C, respectively. They hydrolyzed xylan to xylose and neither had β-xylosidase (EC activity, indicating that they are endo-β-xylanases (EC With these results, we expect that PaXyns can be employed in saccharizing lignocellulosic biomass materials for the production of useful products just like other endoxylanases. After 72 h of LBDW fed-batch cultivation using a jar-fermentor, strain GB-4(0) produced 17.3 U/ml (corresponding to about 0.3 g/l) of PaXynG and removed 63% of dissolved organic carbon and 87% of dissolved total phosphorus from LBDW. These results demonstrate the potential of P. antarctica for xylanase production during LBDW treatment.
PMCID: PMC4463951  PMID: 26069206
Xylanase; Pseudozyma antarctica; Jar-fermentor; Xylose inducible; Lignocellulosic bioethanol distillery wastewater; Wastewater treatment
2.  Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants 
AMB Express  2012;2:40.
To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.
PMCID: PMC3444367  PMID: 22856640
Biodegradable plastic; Leaf surface; Phylloplane fungi; Mulch film; PCR-DGGE
3.  Phyllosphere yeasts rapidly break down biodegradable plastics 
AMB Express  2011;1:44.
The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.
PMCID: PMC3293741  PMID: 22126328
Pseudozyma; Biodegradable plastic; Phyllosphere; Yeast

Results 1-3 (3)