PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Metabolism of alkenes and ketones by Candida maltosa and related yeasts 
AMB Express  2014;4:75.
Knowledge is scarce about the degradation of ketones in yeasts. For bacteria a subterminal degradation of alkanes to ketones and their further metabolization has been described which always involved Baeyer-Villiger monooxygenases (BVMOs). In addition, the question has to be clarified whether alkenes are converted to ketones, in particular for the oil degrading yeast Candida maltosa little is known. In this study we show the degradation of the aliphatic ketone dodecane-2-one by Candida maltosa and the related yeasts Candida tropicalis, Candida catenulata and Candida albicans as well as Trichosporon asahii and Yarrowia lipolytica. One pathway is initiated by the formation of decyl acetate, resulting from a Baeyer-Villiger-oxidation of this ketone. Beyond this, an initial reduction to dodecane-2-ol by a keto reductase was clearly shown. In addition, two different ways to metabolize dodec-1-ene were proposed. One involved the formation of dodecane-2-one and the other one a conversion leading to carboxylic and dicarboxylic acids. Furthermore the induction of ketone degrading enzymes by dodecane-2-one and dodec-1-ene was shown. Interestingly, with dodecane no subterminal degradation products were detected and it did not induce any enzymes to convert dodecane-2-one.
doi:10.1186/s13568-014-0075-2
PMCID: PMC4192553  PMID: 25309846
Hydrocarbon; alkene; ketone; Candida; yeast; biotransformation
2.  Recombinant expression and purification of the 2,5-diketocamphane 1,2-monooxygenase from the camphor metabolizing Pseudomonas putida strain NCIMB 10007 
AMB Express  2011;1:13.
Three different Baeyer-Villiger monooxygenases (BVMOs) were reported to be involved in the camphor metabolism by Pseudomonas putida NCIMB 10007. During (+)-camphor degradation, 2,5-diketocamphane is formed serving as substrate for the 2,5-diketocamphane 1,2-monooxygenase. This enzyme is encoded on the CAM plasmid and depends on the cofactors FMN and NADH and hence belongs to the group of type II BVMOs. We have cloned and recombinantly expressed the oxygenating subunit of the 2,5-diketocamphane 1,2-monooxygenase (2,5-DKCMO) in E. coli followed by His-tag-based affinity purification. A range of compounds representing different BVMO substrate classes were then investigated, but only bicyclic ketones were converted by 2,5-DKCMO used as crude cell extract or after purification. Interestingly, also (-)-camphor was oxidized, but conversion was about 3-fold lower compared to (+)-camphor. Moreover, activity of purified 2,5-DKCMO was observed in the absence of an NADH-dehydrogenase subunit.
doi:10.1186/2191-0855-1-13
PMCID: PMC3222318  PMID: 21906366
Baeyer-Villiger monooxygenases; camphor; Pseudomonas putida NCIMB 10007; 2,5-diketocamphane 1,2-monooxygenase; bicyclic ketones

Results 1-2 (2)