PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Targeting of Conserved Gag-Epitopes in Early HIV Infection Is Associated with Lower Plasma Viral Load and Slower CD4+ T Cell Depletion 
Abstract
We aimed to investigate whether the character of the immunodominant HIV-Gag peptide (variable or conserved) targeted by CD8+ T cells in early HIV infection would influence the quality and quantity of T cell responses, and whether this would affect the rate of disease progression. Treatment-naive HIV-infected study subjects within the OPTIONS cohort at the University of California, San Francisco, were monitored from an estimated 44 days postinfection for up to 6 years. CD8+ T cells responses targeting HLA-matched HIV-Gag-epitopes were identified and characterized by multicolor flow cytometry. The autologous HIV gag sequences were obtained. We demonstrate that patients targeting a conserved HIV-Gag-epitope in early infection maintained their epitope-specific CD8+ T cell response throughout the study period. Patients targeting a variable epitope showed decreased immune responses over time, although there was no limitation of the functional profile, and they were likely to target additional variable epitopes. Maintained immune responses to conserved epitopes were associated with no or limited sequence evolution within the targeted epitope. Patients with immune responses targeting conserved epitopes had a significantly lower median viral load over time compared to patients with responses targeting a variable epitope (0.63 log10 difference). Furthermore, the rate of CD4+ T cell decline was slower for subjects targeting a conserved epitope (0.85% per month) compared to subjects targeting a variable epitope (1.85% per month). Previous studies have shown that targeting of antigens based on specific HLA types is associated with a better disease course. In this study we show that categorizing epitopes based on their variability is associated with clinical outcome.
doi:10.1089/aid.2012.0171
PMCID: PMC3581067  PMID: 23140171
2.  Characterization of Human Immunodeficiency Virus Type 1 Populations Containing CXCR4-Using Variants from Recently Infected Individuals 
Abstract
We screened 150 individuals from two recent seroconverter cohorts and found that six (4%) had CXCR4-using viruses. Clonal analysis of these six individuals, along with a seventh individual identified during clinical care as a recent seroconverter, revealed the presence of both X4- and dual-tropic variants in these recently infected adults. The ability of individual CXCR4-using variants to infect cells expressing CD4/CXCR4 or CD4/CCR5 varied dramatically. These data demonstrate that virus populations in some newly infected individuals can consist of either heterogeneous populations containing both CXCR4-using and CCR5-tropic viruses, or homogeneous populations containing only CXCR4-using viruses. The presence of CXCR4-using viruses at early stages of infection suggests that testing for viral tropism before using CCR5 antagonists may be important even in persons with known recent infection. The presence of CXCR4-using viruses in a subset of newly infected individuals could impact the efficacies of vaccine and microbicide strategies that target CCR5-tropic viruses.
doi:10.1089/aid.2008.0252
PMCID: PMC2827835  PMID: 19678765
3.  HIV-1-Specific T Cell-Dependent Natural Killer (NK) Cell Activation: Major Contribution by NK Cells to Interferon-γ Production in Response to HIV-1 Antigens 
Abstract
Natural killer (NK) cells can directly recognize virus-infected cells. Here, we demonstrate that NK cells also produce interferon (IFN)-γ in an HIV-1-specific, T cell-dependent manner. After stimulation of peripheral blood mononuclear cells (PBMCs) from HIV-1-infected individuals with HIV-1-derived peptides, up to half of the IFN-γ-producing PBMCs are NK cells. These results indicate that T cell-dependent NK cell IFN-γ production can be important for immune control of HIV-1, and have implications for the interpretation of data from vaccine trials using ELISPOT and ELISA.
doi:10.1089/aid.2008.0165
PMCID: PMC2853859  PMID: 19500013

Results 1-3 (3)