PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Comparative evaluation of tableting compression behaviors by methods of internal and external lubricant addition: Inhibition of enzymatic activity of trypsin preparation by using external lubricant addition during the tableting compression process 
AAPS PharmSci  2001;3(3):32-42.
This study evaluated tableting compression by using internal and external lubricant addition. The effect of lubricant addition on the enzymatic activity of trypsin, which was used as a model drug during the tableting compression process, was also investigated. The powder mixture (2% crystalline trypsin, 58% crystalline lactose, and 40% microcrystalline cellulose) was kneaded with 5% hydroxypropyl cellulose aqueous solution and then granulated using an extruding granulator equipped with a 0.5-mm mesh screen at 20 rpm. After drying, the sample granules were passed through a 10-mesh screen (1680 μm). A 200-mg sample was compressed by using 8-mm punches and dies at 49, 98, 196, or 388 MPa (Mega Pascal) at a speed of 25 mm/min. The external lubricant compression was performed using granules without lubricant in the punches and dies. The granules were already dry coated by the lubricant. In contrast, the internal lubricant compression was performed using sample granules (without dry coating) containing 0.5% lubricant. At 98 MPa, for example, the compression level using the external lubricant addition method was about 13% higher than that for internal addition. The significantly higher compressing energy was also observed at other MPas. By comparison, the friction energy for the external addition method calculated based on upper and lower compression forces was only slightly larger. The hardness of tablets prepared using the internal addition method was 34% to 48% lower than that for the external addition method. The total pore volume of the tablet prepared using the external addition method was significantly higher. The maximum ejection pressure using the no-addition method (ie, the tablet was prepared using neither dry-coated granules nor added lubricant) was significantly higher than that of other addition methods. The order was as follows: no addition, external addition, and then internal addition. The ejection energy (EE) for internal addition was the lowest; for no addition, EE was the highest. In the dissolution test, the tablets obtained using external addition immediately disintegrated and showed faster drug release than those prepared using internal addition. This result occurred because the water penetration rate of the tablet using the external addition was much higher. The trypsin activity in tablets prepared using the external addition method was significantly higher than that produced using the internal addition method at the same pressure. All these results suggest that the external addition method might produce a fast-dissolution tablet. Because the drug will be compressed using low pressure only, an unstable bulk drug may be tableted without losing potency.
doi:10.1208/ps030320
PMCID: PMC2751015  PMID: 11741271
Tableting; Trypsin; Preparation; Compression; Dissolution
2.  Comparative evaluation of the degree of indomethacin crystallinity by chemoinfometrical fourie-transformed near-infrared spectroscopy and conventional powder X-ray diffractiometry 
AAPS PharmSci  2000;2(1):80-87.
A chemoinfometrical method for evaluating the degree of crystallinity based on fourie-transformed near-infrared (FT-NIR) spectroscopy was established and compared with the conventional powder X-ray diffraction method. Powder X-ray diffraction profiles and FT-NIR spectra were recorded for 11 kinds of standard materials with various degrees of crystallinity obtained by physically mixing crystalline and amorphous indomethacin (IMC). Chemoinfometric analysis was performed on the FT-NIR spectral data sets by multiple linear regression (MLR) (MLR-Set-Up Search program). The crystalline and amorphous forms showed significant NIR spectral peaks. MLR analysis was performed based on normalized NIR spectra sets for standard samples of known crystallinity. A calibration equation was determined to minimize the root mean square error of prediction. The predicted crystallinity values were reproducible and had a smaller standard deviation. The values of crystallinity predicted by X-ray powder diffractometry and FT-NIR spectrometry suggested a satisfactory correlation between the 2 techniques. The results indicated that FT-NIR spectroscopy provides for an accurate quantitative analysis of crystallinity compared with conventional X-ray diffractometry.
doi:10.1208/ps020109
PMCID: PMC2751004  PMID: 11741225

Results 1-2 (2)