Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)
Year of Publication
1.  Statistics on BCS Classification of Generic Drug Products Approved Between 2000 and 2011 in the USA 
The AAPS Journal  2012;14(4):664-666.
The Biopharmaceutics Classification system (BCS) classifies drug substances based on aqueous solubility and intestinal permeability. The objective of this study was to use the World Health Organization Model List of Essential Medicines to determine the distribution of BCS Class 1, 2, 3, and 4 drugs in Abbreviated New drug Applications (ANDA) submissions. To categorize solubility and intestinal permeability properties of generic drugs under development, we used a list of 61 drugs which were classified as BCS 1, 2, 3, and 4 drugs with certainty in the World Health Organization Model List of Essential Medicines. Applying this list to evaluation of 263 ANDA approvals of BCS drugs during the period of 2000 to 2011 indicated 110 approvals (41.8%) for Class 1 drugs (based on both biowaiver and in vivo bioequivalence studies), 55 (20.9%) approvals for Class 2 drugs, 98 (37.3%) approvals for Class 3 drugs, and no (0%) approvals for Class 4 drugs. The present data indicated a trend of more ANDA approvals of BCS Class 1 drugs than Class 3 or Class 2 drugs. Antiallergic drugs in Class 1, drugs for pain relief in Class 2 and antidiabetic drugs in Class 3 have received the largest number of approvals during this period.
PMCID: PMC3475853  PMID: 22718306
ANDA; BCS biowaiver; bioequivalence; Biopharmaceutics Classification System; generic drug product
2.  Summary Workshop Report: Facilitating Oral Product Development and Reducing Regulatory Burden Through Novel Approaches to Assess Bioavailability/Bioequivalence 
The AAPS Journal  2012;14(3):627-638.
This summary workshop report highlights presentations and over-arching themes from an October 2011 workshop. Discussions focused on best practices in the application of biopharmaceutics in oral drug product development and evolving bioequivalence approaches. Best practices leverage biopharmaceutic data and other drug, formulation, and patient/disease data to identify drug development challenges in yielding a successfully performing product. Quality by design and product developability paradigms were discussed. Development tools include early development strategies to identify critical absorption factors and oral absorption modeling. An ongoing theme was the desire to comprehensively and systematically assess risk of product failure via the quality target product profile and root cause and risk analysis. However, a parallel need is reduced timelines and fewer resources. Several presentations discussed applying Biopharmaceutics Classification System (BCS) and in vitro–in vivo correlations in development and in post-development and discussed both resource savings and best scientific practices. The workshop also focused on evolving bioequivalence approaches, with emphasis on highly variable products (HVDP), as well as specialized modified-release products. In USA, two bioequivalence approaches for HVDP are the reference-scaled average bioequivalence approach and the two-stage group-sequential design. An adaptive sequential design approach is also acceptable in Canada. In European Union, two approaches for HVDP are a two-stage design and an approach to widen Cmax acceptance limits. For some specialized modified-release products, FDA now requests partial area under the curve. Rationale and limitations of such metrics were discussed (e.g., zolpidem and methylphenidate). A common theme was the benefit of the scientific and regulatory community developing, validating, and harmonizing newer bioequivalence methodologies (e.g., BCS-based waivers and HVDP trial designs).
PMCID: PMC3385831  PMID: 22684402
3.  Meeting Report: Applied Biopharmaceutics and Quality by Design for Dissolution/Release Specification Setting: Product Quality for Patient Benefit 
The AAPS Journal  2010;12(3):465-472.
A biopharmaceutics and Quality by Design (QbD) conference was held on June 10–12, 2009 in Rockville, Maryland, USA to provide a forum and identify approaches for enhancing product quality for patient benefit. Presentations concerned the current biopharmaceutical toolbox (i.e., in vitro, in silico, pre-clinical, in vivo, and statistical approaches), as well as case studies, and reflections on new paradigms. Plenary and breakout session discussions evaluated the current state and envisioned a future state that more effectively integrates QbD and biopharmaceutics. Breakout groups discussed the following four topics: Integrating Biopharmaceutical Assessment into the QbD Paradigm, Predictive Statistical Tools, Predictive Mechanistic Tools, and Predictive Analytical Tools. Nine priority areas, further described in this report, were identified for advancing integration of biopharmaceutics and support a more fundamentally based, integrated approach to setting product dissolution/release acceptance criteria. Collaboration among a broad range of disciplines and fostering a knowledge sharing environment that places the patient's needs as the focus of drug development, consistent with science- and risk-based spirit of QbD, were identified as key components of the path forward.
Electronic supplementary material
The online version of this article (doi:10.1208/s12248-010-9206-0) contains supplementary material, which is available to authorized users.
PMCID: PMC2895441  PMID: 20517660
biopharmaceutics; dissolution; product performance; quality by design; quality target product profile
4.  Comparison of Drug Permeabilities and BCS Classification: Three Lipid-Component PAMPA System Method versus Caco-2 Monolayers 
The AAPS Journal  2010;12(2):238-241.
PMCID: PMC2844511  PMID: 20224985
biopharmaceutics classification system; Caco-2; membrane transport; PAMPA; permeability
5.  Method to Screen Substrates of Apical Sodium-Dependent Bile Acid Transporter 
The AAPS Journal  2008;10(4):596-605.
Human apical sodium-dependent bile acid transporter (hASBT) is a potential prodrug target under study. Development of prodrugs that target hASBT may yield compounds with low solubility and/or susceptibility to hydrolysis. A transport uptake method is needed that increases compound solubility and avoids NaOH for cell lysis during postexperimental cell sample preparation. The overall goal was to develop an assay method to screen for hASBT uptake of novel compounds. The first objective was to determine the maximum cosolvent concentrations that are compatible with an hASBT active transport assay. The second objective was to develop a NaOH-free cell lysis method to process cell samples from these uptake studies. The following cosolvents were studied: dimethylacetamide (DMAC), dimethylformamide (DMF), dimethylsulfoxide (DMSO), ethanol, methanol, polyethylene glycol-400, propylene glycol, and dioxane. Initial studies included taurocholate flux studies across hASBT-Madin–Darby canine kidney monolayers using up to 10% cosolvent, as well as cytotoxicity studies. The effect of selected cosolvent concentrations on the hASBT Michaelis–Menten kinetic parameters was evaluated. Additionally, two acetonitrile-based cell lysis methods that do not use NaOH were evaluated in terms of percent sample recovery and hASBT kinetic parameters. Results showed that the maximum permissible cosolvent concentrations for hASBT uptake studies, without compromising assay results or causing cytotoxicity, are 1% DMAC, 1% DMF, 2.5% DMSO, 2.5% methanol, and 2.5% ethanol. Additionally, both NaOH-free, acetonitrile-based cell lysis methods provided similar recovery and hASBT results, compared to NaOH method. Hence, an assay method was developed to screen for active transport, allowing for cosolvents that can solubilize compounds and avoid NaOH sample treatment, which can otherwise degrade compound.
PMCID: PMC2628203  PMID: 19085111
apical sodium-dependent bile acid transporter; bile acid; screen; solvent; transporter
6.  Summary Workshop Report: Bioequivalence, Biopharmaceutics Classification System, and Beyond 
The AAPS Journal  2008;10(2):373-379.
The workshop “Bioequivalence, Biopharmaceutics Classification System, and Beyond” was held May 21–23, 2007 in North Bethesda, MD, USA. This workshop provided an opportunity for pharmaceutical scientists to discuss the FDA guidance on the Biopharmaceutics Classification System (BCS), bioequivalence of oral products, and related FDA initiatives such as the FDA Critical Path Initiative. The objective of this Summary Workshop Report is to document the main points from this workshop. Key highlights of the workshop were (a) the described granting of over a dozen BCS-based biowaivers by the FDA for Class I drugs whose formulations exhibit rapid dissolution, (b) continued scientific support for biowaivers for Class III compounds whose formulations exhibit very rapid dissolution, (c) scientific support for a number of permeability methodologies to assess BCS permeability class, (d) utilization of BCS in pharmaceutical research and development, and (e) scientific progress in in vitro dissolution methods to predict dosage form performance.
PMCID: PMC2751390  PMID: 18679807
bioavailability; bioequivalence; biopharmaceutics classification system (BCS); oral absorption; permeability; regulatory science; solubility
7.  In Vitro Studies are Sometimes Better than Conventional Human Pharmacokinetic In Vivo Studies in Assessing Bioequivalence of Immediate-Release Solid Oral Dosage Forms 
The AAPS Journal  2008;10(2):289-299.
Human pharmacokinetic in vivo studies are often presumed to serve as the “gold standard” to assess product bioequivalence (BE) of immediate-release (IR) solid oral dosage forms. However, when this general assumption is re-visited, it appears that in vitro studies are sometimes better than in vivo studies in assessing BE of IR solid oral dosage forms. Reasons for in vitro studies to sometimes serve as the better method are that in vitro studies: (a) reduce costs, (b) more directly assess product performance, and (c) offer benefits in terms of ethical considerations. Reduced costs are achieved through avoiding in vivo studies where BE is self-evident, where biopharmaceutic data anticipates BE, and where in vivo BE study type II error is high. In vitro studies more directly assess product performance than do conventional human pharmacokinetic BE studies, since in vitro studies focus on comparative drug absorption from the two products, while in vivo BE testing can suffer from complications due to its indirect approach. Regarding ethical considerations, in vitro studies better embrace the principle “No unnecessary human testing should be performed” and can result in faster development. Situations when in vitro test should be viewed as preferred include Class I drugs with rapid dissolution, Class III drugs with very rapid dissolution, and highly variable drugs with rapid dissolution and that are not bio(equivalence)problem drugs. Sponsors of potential in vivo human pharmacokinetic BE testing should be required to justify why in vitro data is insufficient, similar to proposed animal testing requires justification to not employ an in vitro approach.
PMCID: PMC2751377  PMID: 18500564
bioavailability; bioequivalence; biopharmaceutics; Biopharmaceutics Classification System; dissolution; in vitro; therapeutic equivalency

Results 1-7 (7)