Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
1.  Challenges and Opportunities in Establishing Scientific and Regulatory Standards for Assuring Therapeutic Equivalence of Modified Release Products: Workshop Summary Report 
The AAPS Journal  2010;12(3):371-377.
Modified release products are complex dosage forms designed to release drug in a controlled manner to achieve desired efficacy and safety. Inappropriate control of drug release from such products may result in reduced efficacy or increased toxicity. This workshop provided an opportunity for pharmaceutical scientists from academia, industry, and regulatory agencies to discuss current industry practices and regulatory expectations for demonstrating pharmaceutical equivalence and bioequivalence of MR products, further facilitating the establishment of regulatory standards for ensuring therapeutic equivalence of these products.
PMCID: PMC2895434  PMID: 20440588
bioequivalence; interchangeability; modified release; pharmaceutical equivalence; therapeutic equivalence
3.  Evaluation of a Scaling Approach for the Bioequivalence of Highly Variable Drugs 
The AAPS Journal  2008;10(3):450-454.
Various approaches for evaluating the bioequivalence (BE) of highly variable drugs (CV ≥ 30%) have been debated for many years. More recently, the FDA conducted research to evaluate one such approach: scaled average BE. A main objective of this study was to determine the impact of scaled average BE on study power, and compare it to the method commonly applied currently (average BE). Three-sequence, three period, two treatment partially replicated cross-over BE studies were simulated in S-Plus. Average BE criteria, using 80–125% limits on the 90% confidence intervals for Cmax and AUC geometric mean ratios, as well as scaled average BE were applied to the results. The percent of studies passing BE was determined under different conditions. Variables tested included within subject variability, point estimate constraint, and different values for σw0, which is a constant set by the regulatory agency. The simulation results demonstrated higher study power with scaled average BE, compared to average BE, as within subject variability increased. At 60% CV, study power was more than 90% for scaled average BE, compared with about 22% for average BE. A σw0 value of 0.25 appears to work best. The results of this research project suggest that scaled average BE, using a partial replicate design, is a good approach for the evaluation of BE of highly variable drugs.
PMCID: PMC2761698  PMID: 18726698
bioequivalence; highly variable drugs; scaled bioequivalence; simulations

Results 1-3 (3)