PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Design preferences and cognitive styles: experimentation by automated website synthesis 
Background
This article aims to demonstrate computational synthesis of Web-based experiments in undertaking experimentation on relationships among the participants' design preference, rationale, and cognitive test performance. The exemplified experiments were computationally synthesised, including the websites as materials, experiment protocols as methods, and cognitive tests as protocol modules. This work also exemplifies the use of a website synthesiser as an essential instrument enabling the participants to explore different possible designs, which were generated on the fly, before selection of preferred designs.
Methods
The participants were given interactive tree and table generators so that they could explore some different ways of presenting causality information in tables and trees as the visualisation formats. The participants gave their preference ratings for the available designs, as well as their rationale (criteria) for their design decisions. The participants were also asked to take four cognitive tests, which focus on the aspects of visualisation and analogy-making. The relationships among preference ratings, rationale, and the results of cognitive tests were analysed by conservative non-parametric statistics including Wilcoxon test, Krustal-Wallis test, and Kendall correlation.
Results
In the test, 41 of the total 64 participants preferred graphical (tree-form) to tabular presentation. Despite the popular preference for graphical presentation, the given tabular presentation was generally rated to be easier than graphical presentation to interpret, especially by those who were scored lower in the visualization and analogy-making tests.
Conclusions
This piece of evidence helps generate a hypothesis that design preferences are related to specific cognitive abilities. Without the use of computational synthesis, the experiment setup and scientific results would be impractical to obtain.
doi:10.1186/1759-4499-4-2
PMCID: PMC3386886  PMID: 22748000
2.  P2P proteomics -- data sharing for enhanced protein identification 
Background
In order to tackle the important and challenging problem in proteomics of identifying known and new protein sequences using high-throughput methods, we propose a data-sharing platform that uses fully distributed P2P technologies to share specifications of peer-interaction protocols and service components. By using such a platform, information to be searched is no longer centralised in a few repositories but gathered from experiments in peer proteomics laboratories, which can subsequently be searched by fellow researchers.
Methods
The system distributively runs a data-sharing protocol specified in the Lightweight Communication Calculus underlying the system through which researchers interact via message passing. For this, researchers interact with the system through particular components that link to database querying systems based on BLAST and/or OMSSA and GUI-based visualisation environments. We have tested the proposed platform with data drawn from preexisting MS/MS data reservoirs from the 2006 ABRF (Association of Biomolecular Resource Facilities) test sample, which was extensively tested during the ABRF Proteomics Standards Research Group 2006 worldwide survey. In particular we have taken the data available from a subset of proteomics laboratories of Spain's National Institute for Proteomics, ProteoRed, a network for the coordination, integration and development of the Spanish proteomics facilities.
Results and Discussion
We performed queries against nine databases including seven ProteoRed proteomics laboratories, the NCBI Swiss-Prot database and the local database of the CSIC/UAB Proteomics Laboratory. A detailed analysis of the results indicated the presence of a protein that was supported by other NCBI matches and highly scored matches in several proteomics labs. The analysis clearly indicated that the protein was a relatively high concentrated contaminant that could be present in the ABRF sample. This fact is evident from the information that could be derived from the proposed P2P proteomics system, however it is not straightforward to arrive to the same conclusion by conventional means as it is difficult to discard organic contamination of samples. The actual presence of this contaminant was only stated after the ABRF study of all the identifications reported by the laboratories.
doi:10.1186/1759-4499-4-1
PMCID: PMC3298698  PMID: 22293032

Results 1-2 (2)