Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)
Year of Publication
1.  Application of Improved Homogeneity Similarity-Based Denoising in Optical Coherence Tomography Retinal Images 
Journal of Digital Imaging  2014;28(3):346-361.
Image denoising is a fundamental preprocessing step of image processing in many applications developed for optical coherence tomography (OCT) retinal imaging—a high-resolution modality for evaluating disease in the eye. To make a homogeneity similarity-based image denoising method more suitable for OCT image removal, we improve it by considering the noise and retinal characteristics of OCT images in two respects: (1) median filtering preprocessing is used to make the noise distribution of OCT images more suitable for patch-based methods; (2) a rectangle neighborhood and region restriction are adopted to accommodate the horizontal stretching of retinal structures when observed in OCT images. As a performance measurement of the proposed technique, we tested the method on real and synthetic noisy retinal OCT images and compared the results with other well-known spatial denoising methods, including bilateral filtering, five partial differential equation (PDE)-based methods, and three patch-based methods. Our results indicate that our proposed method seems suitable for retinal OCT imaging denoising, and that, in general, patch-based methods can achieve better visual denoising results than point-based methods in this type of imaging, because the image patch can better represent the structured information in the images than a single pixel. However, the time complexity of the patch-based methods is substantially higher than that of the others.
PMCID: PMC4441691  PMID: 25404105
Image denoising; Optical coherence tomography; Homogeneity similarity; Retina
2.  Quantitative Imaging Biomarker Ontology (QIBO) for Knowledge Representation of Biomedical Imaging Biomarkers 
Journal of Digital Imaging  2013;26(4):630-641.
A widening array of novel imaging biomarkers is being developed using ever more powerful clinical and preclinical imaging modalities. These biomarkers have demonstrated effectiveness in quantifying biological processes as they occur in vivo and in the early prediction of therapeutic outcomes. However, quantitative imaging biomarker data and knowledge are not standardized, representing a critical barrier to accumulating medical knowledge based on quantitative imaging data. We use an ontology to represent, integrate, and harmonize heterogeneous knowledge across the domain of imaging biomarkers. This advances the goal of developing applications to (1) improve precision and recall of storage and retrieval of quantitative imaging-related data using standardized terminology; (2) streamline the discovery and development of novel imaging biomarkers by normalizing knowledge across heterogeneous resources; (3) effectively annotate imaging experiments thus aiding comprehension, re-use, and reproducibility; and (4) provide validation frameworks through rigorous specification as a basis for testable hypotheses and compliance tests. We have developed the Quantitative Imaging Biomarker Ontology (QIBO), which currently consists of 488 terms spanning the following upper classes: experimental subject, biological intervention, imaging agent, imaging instrument, image post-processing algorithm, biological target, indicated biology, and biomarker application. We have demonstrated that QIBO can be used to annotate imaging experiments with standardized terms in the ontology and to generate hypotheses for novel imaging biomarker–disease associations. Our results established the utility of QIBO in enabling integrated analysis of quantitative imaging data.
PMCID: PMC3705004  PMID: 23589184
Imaging biomarker; Ontology development; Quantitative imaging
3.  Modeling Perceptual Similarity Measures in CT Images of Focal Liver Lesions 
Journal of Digital Imaging  2012;26(4):714-720.
Motivation: A gold standard for perceptual similarity in medical images is vital to content-based image retrieval, but inter-reader variability complicates development. Our objective was to develop a statistical model that predicts the number of readers (N) necessary to achieve acceptable levels of variability. Materials and Methods: We collected 3 radiologists’ ratings of the perceptual similarity of 171 pairs of CT images of focal liver lesions rated on a 9-point scale. We modeled the readers’ scores as bimodal distributions in additive Gaussian noise and estimated the distribution parameters from the scores using an expectation maximization algorithm. We (a) sampled 171 similarity scores to simulate a ground truth and (b) simulated readers by adding noise, with standard deviation between 0 and 5 for each reader. We computed the mean values of 2–50 readers’ scores and calculated the agreement (AGT) between these means and the simulated ground truth, and the inter-reader agreement (IRA), using Cohen’s Kappa metric. Results: IRA for the empirical data ranged from =0.41 to 0.66. For between 1.5 and 2.5, IRA between three simulated readers was comparable to agreement in the empirical data. For these values , AGT ranged from =0.81 to 0.91. As expected, AGT increased with N, ranging from =0.83 to 0.92 for N = 2 to 50, respectively, with =2. Conclusion: Our simulations demonstrated that for moderate to good IRA, excellent AGT could nonetheless be obtained. This model may be used to predict the required N to accurately evaluate similarity in arbitrary size datasets.
PMCID: PMC3705003  PMID: 23254627
Content-based image retrieval; Decision support; Image perception; Observer variation; Observer performance; Simulation; Inter-observer variation; Liver tumor
6.  Integration of Imaging Signs into RadLex 
Journal of Digital Imaging  2011;25(1):50-55.
Imaging signs form an important part of the language of radiology, but are not represented in established lexicons. We sought to incorporate imaging signs into RSNA's RadLex® ontology of radiology terms. Names of imaging signs and their definitions were culled from books, journal articles, dictionaries, and biomedical web sites. Imaging signs were added into RadLex as subclasses of the term “imaging sign,” which was defined in RadLex as a subclass of “imaging observation.” A total of 743 unique imaging signs were added to RadLex with their 392 synonyms to yield a total of 1,135 new terms. All included definitions and related RadLex terms, including imaging modality, anatomy, and disorder, when appropriate. The information will allow RadLex users to identify imaging signs by modality (e.g., ultrasound signs) and to find all signs related to specific pathophysiology. The addition of imaging signs to RadLex augments its use to index the radiology literature, create and interpret clinical radiology reports, and retrieve relevant cases and images.
PMCID: PMC3264717  PMID: 21494902
Knowledge representation; Information storage and retrieval; Image retrieval; RadLex; Imaging signs; Ontology
7.  Content-Based Image Retrieval in Radiology: Current Status and Future Directions 
Journal of Digital Imaging  2010;24(2):208-222.
Diagnostic radiology requires accurate interpretation of complex signals in medical images. Content-based image retrieval (CBIR) techniques could be valuable to radiologists in assessing medical images by identifying similar images in large archives that could assist with decision support. Many advances have occurred in CBIR, and a variety of systems have appeared in nonmedical domains; however, permeation of these methods into radiology has been limited. Our goal in this review is to survey CBIR methods and systems from the perspective of application to radiology and to identify approaches developed in nonmedical applications that could be translated to radiology. Radiology images pose specific challenges compared with images in the consumer domain; they contain varied, rich, and often subtle features that need to be recognized in assessing image similarity. Radiology images also provide rich opportunities for CBIR: rich metadata about image semantics are provided by radiologists, and this information is not yet being used to its fullest advantage in CBIR systems. By integrating pixel-based and metadata-based image feature analysis, substantial advances of CBIR in medicine could ensue, with CBIR systems becoming an important tool in radiology practice.
PMCID: PMC3056970  PMID: 20376525
Content-based image retrieval; imaging informatics; information storage and retrieval; digital image management; decision support
8.  Ontology-Assisted Analysis of Web Queries to Determine the Knowledge Radiologists Seek 
Journal of Digital Imaging  2010;24(1):160-164.
Radiologists frequently search the Web to find information they need to improve their practice, and knowing the types of information they seek could be useful for evaluating Web resources. Our goal was to develop an automated method to categorize unstructured user queries using a controlled terminology and to infer the type of information users seek. We obtained the query logs from two commonly used Web resources for radiology. We created a computer algorithm to associate RadLex-controlled vocabulary terms with the user queries. Using the RadLex hierarchy, we determined the high-level category associated with each RadLex term to infer the type of information users were seeking. To test the hypothesis that the term category assignments to user queries are non-random, we compared the distributions of the term categories in RadLex with those in user queries using the chi square test. Of the 29,669 unique search terms found in user queries, 15,445 (52%) could be mapped to one or more RadLex terms by our algorithm. Each query contained an average of one to two RadLex terms, and the dominant categories of RadLex terms in user queries were diseases and anatomy. While the same types of RadLex terms were predominant in both RadLex itself and user queries, the distribution of types of terms in user queries and RadLex were significantly different (p < 0.0001). We conclude that RadLex can enable processing and categorization of user queries of Web resources and enable understanding the types of information users seek from radiology knowledge resources on the Web.
PMCID: PMC3046796  PMID: 20354755
Ontologies; terminologies; vocabularies; RadLex; software tools; controlled vocabulary; natural language processing; web technology
9.  Creating and Curating a Terminology for Radiology: Ontology Modeling and Analysis 
Journal of Digital Imaging  2007;21(4):355-362.
The radiology community has recognized the need to create a standard terminology to improve the clarity of reports, to reduce radiologist variation, to enable access to imaging information, and to improve the quality of practice. This need has recently led to the development of RadLex, a controlled terminology for radiology. The creation of RadLex has proved challenging in several respects: It has been difficult for users to peruse the large RadLex taxonomies and for curators to navigate the complex terminology structure to check it for errors and omissions. In this work, we demonstrate that the RadLex terminology can be translated into an ontology, a representation of terminologies that is both human-browsable and machine-processable. We also show that creating this ontology permits computational analysis of RadLex and enables its use in a variety of computer applications. We believe that adopting an ontology representation of RadLex will permit more widespread use of the terminology and make it easier to collect feedback from the community that will ultimately lead to improving RadLex.
PMCID: PMC3043845  PMID: 17874267
Ontologies; terminologies; vocabularies; RadLex; software tools
10.  An Ontology for PACS Integration 
Journal of Digital Imaging  2006;19(4):316-327.
An ontology describes a set of classes and the relationships among them. We explored the use of an ontology to integrate picture archiving and communication systems (PACS) with other information systems in the clinical enterprise. We created an ontological model of thoracic radiology that contained knowledge of anatomy, imaging procedures, and performed procedure steps. We explored the use of the model in two use cases: (1) to determine examination completeness and (2) to identify reference (comparison) images obtained in the same imaging projection. The model incorporated a total of 138 classes, including radiology orderables, procedures, procedure steps, imaging modalities, patient positions, and imaging planes. Radiological knowledge was encoded as relationships among these classes. The ontology successfully met the information requirements of the two use-case scenarios. Ontologies can represent radiological and clinical knowledge to integrate PACS with the clinical enterprise and to support the radiology interpretation process.
PMCID: PMC3045159  PMID: 16763933
Ontologies; semantic models; knowledge representation; knowledge sharing and reuse; PACS; systems integration; workflow; Protégé; Web Ontology Language (OWL); Transforming the Radiologic Interpretation Process (TRIP)

Results 1-10 (10)