Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Interactive Image Enhancement of CR and DR Images 
Journal of Digital Imaging  2004;17(3):189-195.
There is continual pressure on the radiology department to increase its productivity. Two important links to productivity in the computed/digital radiography (CR/DR) workflow chain are the postprocessing step by technologists and the primary diagnosis step by radiologists, who may apply additional image enhancements to aid them in diagnosis. With the large matrix size of CR and DR images and the computational complexity of these algorithms, it has been challenging to provide interactive image enhancement, particularly on full-resolution images. We have used a new programmable processor as the main computing engine of enhancement algorithms for CR or DR images. We have mapped these algorithms to the processor, maximally utilizing its architecture. On a 12-bit 2688 × 2688 image, we have achieved the execution time of 465 ms for adaptive unsharp masking, window/level, image rotate, and lookup table operations using a single processor, which represents at least an order of magnitude improvement compared to the response time of current systems. This kind of performance facilitates rapid computation with preset parameter values and/or enables truly interactive QA processing on radiographs by technologists. The fast response time of these algorithms would be especially useful in a real-time radiology setting, where the radiologist’s waiting time in performing image enhancements before making diagnosis can be greatly reduced. We believe that the use of these processors for fast CR/DR image computing coupled with the seamless flow of images and patient data will enable the radiology department to achieve higher productivity.
PMCID: PMC3046609  PMID: 15175930
Digital radiography; computed radiography; real-time radiology; high-performance computing; workflow; image enhancement; QA processing
2.  Fast Adaptive Unsharp Masking with Programmable Mediaprocessors 
Journal of Digital Imaging  2003;16(2):230-239.
Unsharp masking is a widely used image-enhancement method in medical imaging. Hardware-based solutions can be developed to support high computational demand for unsharp masking, but they suffer from limited flexibility. Software solutions can easily incorporate new features and modify key parameters, such as filtering kernel size, but they have not been able to meet the fast computing requirement. Modern programmable mediaprocessors can meet both fast computing and flexibility requirements, which will benefit medical image computing. In this article, we present fast adaptive unsharp masking on two leading mediaprocessors or high-end digital signal processors, Hitachi/Equator Technologies MAP-CA and Texas Instruments TMS320C64x. For a 2k × 2k 16-bit image, our adaptive unsharp masking with a 201 × 201 boxcar kernel takes 225 ms on a 300-MHz MAP-CA and 74 ms on a 600-MHz TMS320C64x. This fast unsharp masking enables technologists and/or physicians to adjust parameters interactively for optimal quality assurance and image viewing.
PMCID: PMC3046473  PMID: 14564661
Adaptive unsharp masking algorithm; programmable mediaprocessors; digital signal processors; fast computing-interactive unsharp masking; medical imaging

Results 1-4 (4)