PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (30)
 

Clipboard (0)
None
Journals
Year of Publication
issn:1618-727
1.  Standards for Business Analytics and Departmental Workflow 
Journal of Digital Imaging  2012;26(1):53-57.
Efficient workflow is essential for a successful business. However, there is relatively little literature on analytical tools and standards for defining workflow and measuring workflow efficiency. Here, we describe an effort to define a workflow lexicon for medical imaging departments, including the rationale, the process, and the resulting lexicon.
doi:10.1007/s10278-012-9533-z
PMCID: PMC3553366  PMID: 23065122
Workflow; Cost-effectiveness; Controlled vocabulary; Data mining; Radiology workflow; Workflow re-engineering
2.  Towards a More Cloud-Friendly Medical Imaging Applications Architecture: A Modest Proposal 
Journal of Digital Imaging  2012;26(1):58-64.
Recent information technology literature, in general, and radiology trade journals, in particular, are rife with allusions to the “cloud” suggesting that moving one’s compute and storage assets into someone else’s data center magically solves cost, performance, and elasticity problems. More likely, one is only trading one set of problems for another, including greater latency (aka slower turnaround times) since the image data must now leave the local area network and travel longer paths via encrypted tunnels. To offset this, an imaging system design is needed that reduces the number of high-latency image transmissions, yet can still leverage cloud strengths. This work explores the requirements for such a design.
doi:10.1007/s10278-012-9545-8
PMCID: PMC3553370  PMID: 23135215
DICOM; IHE; Cloud; WADO
4.  Imaging Infrastructure for Research. Part 2. Data Management Practices 
Journal of Digital Imaging  2012;25(5):566-569.
In part one of this series, best practices were described for acquiring and handling data at study sites and importing them into an image repository or database. Here, we present a similar treatment on data management practices for imaging-based studies.
doi:10.1007/s10278-012-9502-6
PMCID: PMC3447091  PMID: 22710986
Clinical trials; Research image database
5.  Whitepapers on Imaging Infrastructure for Research 
Journal of Digital Imaging  2012;25(4):449-453.
doi:10.1007/s10278-012-9490-6
PMCID: PMC3389084  PMID: 22644338
6.  Experience with Importation of Electronic Images into the Medical Record from Physical Media 
Journal of Digital Imaging  2011;24(4):694-699.
The purpose of this article is to describe a system we developed for importing images on compact discs (CDs) from external imaging departments into our clinical image viewing system, and to report on key metrics regarding veracity of information seen on the CDs. We recommend careful attention to the process of CD importation because of the error rate we have seen. We developed a system and process for importing images on CD into our EMR. The importation system scans the CD for digital imaging and communications in medicine (DICOM) images, and collects all patient information seen. That information is presented to the patient for verification. Once validated, the image data is copied into our clinical viewing system. The importation system includes facilities for collecting instances of incorrect data. About 90% of images are now exchanged between our healthcare enterprise and other entities via CD. Data for the wrong patient (e.g., the wrong CD) is seen in about 0.1% of cases, and a similar number of CDs have data for more than one patient on the CD(s) the patient bring to our facility. Most data are now exchanged via DICOM files. DICOM images burned onto CD media are now commonly used for image exchange. However, applications to import DICOM images are not enough. One must implement a process to assure high confidence that the data imported belongs to the patient you are importing.
doi:10.1007/s10278-011-9364-3
PMCID: PMC3138924  PMID: 21286776
Digital imaging and communications in medicine (DICOM); Electronic medical record (EMR); Image distribution; Integrating healthcare enterprise (IHE); Medical record linkage; Teleradiology; Workflow re-engineering
7.  Computer-Aided Detection of Intracranial Aneurysms in MR Angiography 
Journal of Digital Imaging  2009;24(1):86-95.
Intracranial aneurysms represent a significant cause of morbidity and mortality. While the risk factors for aneurysm formation are known, the detection of aneurysms remains challenging. Magnetic resonance angiography (MRA) has recently emerged as a useful non-invasive method for aneurysm detection. However, even for experienced neuroradiologists, the sensitivity to small (<5 mm) aneurysms in MRA images is poor, on the order of 30~60% in recent, large series. We describe a fully automated computer-aided detection (CAD) scheme for detecting aneurysms on 3D time-of-flight (TOF) MRA images. The scheme locates points of interest (POIs) on individual MRA datasets by combining two complementary techniques. The first technique segments the intracranial arteries automatically and finds POIs from the segmented vessels. The second technique identifies POIs directly from the raw, unsegmented image dataset. This latter technique is useful in cases of incomplete segmentation. Following a series of feature calculations, a small fraction of POIs are retained as candidate aneurysms from the collected POIs according to predetermined rules. The CAD scheme was evaluated on 287 datasets containing 147 aneurysms that were verified with digital subtraction angiography, the accepted standard of reference for aneurysm detection. For two different operating points, the CAD scheme achieved a sensitivity of 80% (71% for aneurysms less than 5 mm) with three mean false positives per case, and 95% (91% for aneurysms less than 5 mm) with nine mean false positives per case. In conclusion, the CAD scheme showed good accuracy and may have application in improving the sensitivity of aneurysm detection on MR images.
doi:10.1007/s10278-009-9254-0
PMCID: PMC3046787  PMID: 19937083
Computer-aided detection (CAD); magnetic resonance angiography (MRA); intracranial aneurysm; aneurysm detection
8.  Effect of Automated Image Registration on Radiologist Interpretation 
Journal of Digital Imaging  2007;20(2):105-113.
In this study, we present preliminary data on the effect of automated 3D image alignment on the time to arrive at a decision about an imaging finding, the agreement of multiple of multiple observers, the prevalence of comparison examinations, and technical success rates for the image alignment algorithm. We found that automated image alignment reduced the average time to make a decision by 25% for cases where the structures are rigid, and when the scanning protocol is similar. For cases where these are not true, there is little or no benefit. In our practice, 54% of cases had prior examinations that could be automatically aligned. The overall benefit seen in our department for highly similar exams might be 20% for neuro and 10% for body; the benefit seen in other practices is likely to vary based on scanning practices and prevalence of prior examinations.
doi:10.1007/s10278-007-9023-x
PMCID: PMC3043907  PMID: 17505869
Image registration; image alignment; practice efficiency; TRIP
9.  Semiautomated Quantitation of Carotid Artery Stenosis in Gadolinium-Bolus Magnetic Resonance Angiography  
Journal of Digital Imaging  2002;15(2):69-77.
Magnetic resonance angiography (MRA) has become the standard method for evaluation of carotid occlusive disease. Fast imaging methods combined with bolus intravenous injection of gadolinium contrast have improved the quality of these images. Nevertheless, the gold standard for evaluation was based on projection arterial angiography. The properties of these images are rather different. Whereas most previous evaluations of MRA have used visual assessment of images, we evaluate an algorithm in which a computer algorithm plays the primary role in defining arterial lumen margins, hence, disease. The accuracy of this semiautomated algorithm is shown to compare favorably with gold-standard arteriography in a series of 50 patients.
doi:10.1007/s10278-002-0006-7
PMCID: PMC3611606  PMID: 12202972
10.  Computer-Aided Detection and Diagnosis at the Start of the Third Millennium  
Journal of Digital Imaging  2002;15(2):59-68.
Computer-aided diagnosis has been under development for more than 3 decades. The rate of progress appears exponential, with either recent approval or pending approval for devices focusing on mammography, chest radiographs, and chest CT. Related technologies improve diagnosis for many other types of medical images including virtual colonography, vascular imaging, as well as automated quantitation of image-derived metrics. A variety of techniques are currently employed with success, likely reflecting the variety of imagery used, as well as the variety of tasks. Most areas of medical imaging have had efforts at computer assistance, and some have even received FDA approval and can be reimbursed. We anticipate that the rapid advance of these technologies will continue, and that application will broaden to cover much of medical imaging. Acceptance of, and integration of computer-aided diagnosis technology with the electronic radiology practice is a current challenge. These challenges will be overcome, and we expect that computer-aided diagnosis will be routinely applied to medical images.
doi:10.1007/s10278-002-0011-x
PMCID: PMC3611610  PMID: 12297976
11.  Irreversible Compression of Medical Images 
Journal of Digital Imaging  2002;15(1):5-14.
The volume of data from medical imaging is growing at exponential rates, matching or exceeding the decline in the costs of digital data storage. While methods to reversibly compress image data do exist, current methods only achieve modest reductions in storage requirements. Irreversible compression can achieve substantially higher compression ratios without perceptible image degradation. These techniques are routinely applied in teleradiology, and often in Picture Archiving and Communications Systems. The practicing radiologist needs to understand how these compression techniques work and the nature of the degradation that occurs in order to optimize their medical practice. This paper describes the technology and artifacts commonly used in irreversible compression of medical images.
doi:10.1007/s10278-002-0001-z
PMCID: PMC3946081  PMID: 12134209
data compression; wavelets; JPEG
12.  Evaluation of Irreversible JPEG Compression for A Clinical Ultrasound Practice 
Journal of Digital Imaging  2002;15(1):15-21.
A prior ultrasound study indicated that images with low to moderate levels of JPEG and wavelet compression were acceptable for diagnostic purposes. The purpose of this study is to validate this prior finding using the Joint Photographic Experts Group (JPEG) baseline compression algorithm, at a compression ratio of approximately 10:1, on a sufficiently large number of grayscale and color ultrasound images to attain a statistically significant result. The practical goal of this study is to determine if it is feasible for radiologists to use irreversibly compressed images as an integral part of the day to day ultrasound practice (ie, perform primary diagnosis with, and store irreversibly compressed images in the ultrasound PACS archive). In this study, 5 Radiologists were asked to review 300 grayscale and color static ultrasound images selected from 4 major anatomic groups. Each image was compressed and decompressed using the JPEG baseline compression algorithm at a fixed quality factor resulting in an average compression ratio of approximately 9:1. The images were presented in pairs (original and compressed) in a blinded fashion on a PACS workstation in the ultrasound reading areas, and radiologists were asked to pick which image they preferred in terms of diagnostic utility and their degree of certainty (on a scale from 7 to 4). Of the 1,499 total readings, 50.17% (95% confidence intervals at 47.6%, and 52.7%) indicated a preference for the original image in the pair, and 49.83% (95% confidence intervals at 47.3%, and 52.0%) indicated a preference for the compressed image. These findings led the authors to conclude that static color and gray-scale ultrasound images compressed with JPEG at approximately 9:1 are statistically indistinguishable from the originals for primary diagnostic purposes. Based on the authors laboratory experience with compression and the results of this and other prior studies JPEG compression is now being applied to all ultrasound images in the authors radiology practice before reading. No image quality-related issues have been encountered after 12 months of operation (approximately 48,000 examinations).
doi:10.1007/s10278-002-0003-x
PMCID: PMC3946084  PMID: 12134210
Compression; Joint Photographic Experts Group; ultrasound; medical images; PACS; teleradiology; archive
13.  Functional requirements of a desktop clinical image display application 
Journal of Digital Imaging  2001;14(Suppl 1):149-152.
Conclusion
The requirements for a clinical viewing station have some similarities to requirements of an interpretation workstation, but have some important differences. The user base is a heterogeneous group, and the tasks the clinicians perform vary substantially, increasing the variation in the requirements. However, it is possible to determine a list of requirements that satisfy most clinicians under most circumstances. In addition to the standard image manipulation tools, we have found that integration with the other clinical tools is essential to maintaining or increasing their efficiency. Providing for varying levels of functionality/complexity is also useful, because of the variation in the user base.
doi:10.1007/BF03190322
PMCID: PMC3452711  PMID: 11442079
14.  Requirements for an Enterprise Digital Image Archive  
Journal of Digital Imaging  2001;14(2):72-82.
This report describes several image archival problems facing the authors' department and the results of their attempt to define the requirements for an enterprise digital image archive. The problems identified include the costs of supporting multiple distinct archives, the increased complexity of supporting multiple archive interfaces, the differences in data handling policies and resulting variations in data integrity, and variability in support for nonimage data. The authors also describe the data collected including image volumes and trends and imaging device trends. Finally, the resulting specification for an enterprise digital image archive, including storage and retrieval performance and interface requirements are presented.
doi:10.1007/s10278-001-0005-0
PMCID: PMC3452763  PMID: 11440257
15.  Performance and function of a desktop viewer at mayo clinic scottsdale 
Journal of Digital Imaging  2000;13(Suppl 1):147-152.
A clinical viewing system was integrated with the Mayo Clinic Scottsdale picture archiving and communication system (PACS) for providing images and the report as part of the electronic medical record (EMR). Key attributes of the viewer include a single user log-on, an integrated patient centric EMR image access for all ordered examinations, prefetching of the most recent prior examination of the same modality, and the ability to provide comparison of current and past exams at the same time on the display. Other functions included preset windows, measurement tools, and multiformat display. Images for the prior 12 months are stored on the clinical server and are viewable in less than a second. Images available on the desktop include all computed radiography (CR), chest, magnetic resonance images (MRI), computed tomography (CT), ultrasound (U/S), nuclear, angiographic, gastrointestinal (GI) digital spots, and portable C-arm digital spots. Ad hoc queries of examinations from PACS are possible for those patients whose image may not be on the clinical server, but whose images reside on the PACS archive (10TB). Clinician satisfaction was reported to be high, especially for those staff heavily dependent on timely access to images, as well as those having heavy film usage. The desktop viewer is used for resident access to images. It is also useful for teaching conferences with large-screen projection without film. We report on the measurements of functionality, reliability, and speed of image display with this application.
doi:10.1007/BF03167648
PMCID: PMC3453262  PMID: 10847386
18.  Ultrasound grayscale image compression with JPEG and wavelet techniques 
Journal of Digital Imaging  2000;13(1):25-32.
The purpose of the study was to evaluate the effects of lossy compression on grayscale ultrasound images to determine how much compression can be applied while still maintaining images that are acceptable for diagnostic purposes. The study considered how the acquisition technique (video frame-grabber versus directly acquired in digital form) influences how much compression can be applied. For directly acquired digital images, the study considered how text (that is burned into the image) affects the compressibility of the image. The lossy compression techniques that were considered include JPEG and a Wavelet algorithm using set partitioning in hierarchical trees (SPIHT).
doi:10.1007/BF03168337
PMCID: PMC3453433  PMID: 10696598
lossy compression; JPEG; wavelet compression; ultrasonography; Medical Images; picture archiving and communication systems; teleradiology
19.  Impact of electronic imaging on clinician behavior in the urgent care setting 
Journal of Digital Imaging  1999;12(Suppl 1):148-151.
Although it is intuitively valuable that more expedient delivery of radiographic images and reports to clinicians would improve patient care, it is important to document these outcomes to validate further advances in these areas. We evaluated the care of 215 patients seen at a walk-in clinic to determine what benefit digital imaging is to the patient. Cohorts consisted of all patients for whom specified radiology examinations were ordered during a 7-day period. The first cohort was recruited when analog films were used. The second cohort received examinations performed with computed radiography (CR) acquisition and computer display, which had been in use for 2 years. Patients were categorized as to the type of study they received, as well as whether a staff radiologist was immediately available to read the study. Clinical behavior was characterized by outcome measures of time to final diagnosis, time to final treatment, and need for follow-up. Our analysis demonstrated a reduction in time to final diagnosis that was better appreciated during the times when a staff radiologist was not immediately available. It also suggested that greater time reductions were seen for patients who received extremity examinations than those who received chest, sinus, or rib films. These data suggest that digital imaging is a useful tool to improve clinical outcome of patients seen in the acute care setting.
doi:10.1007/BF03168785
PMCID: PMC3452884  PMID: 10342196
20.  Electronic imaging impact on image and report turnaround times 
Journal of Digital Imaging  1999;12(Suppl 1):155-159.
We prospectively compared image and report delivery times in our Urgent Care Center (UCC) during a film-based practice (1995) and after complete implementation of an electronic imaging practice in 1997. Before switching to a totally electronic and filmless practice, multiple time periods were consistently measured during a 1-week period in May 1995 and then again in a similar week in May 1997 after implementation of electronic imaging. All practice patterns were the same except for a film-based practice in 1995 versus a filmless practice in 1997. The following times were measured: (1) waiting room time, (2) technologist’s time of examination, (3) time to quality control, (4) radiology interpretation times, (5) radiology image and report delivery time, (6) total radiology turn-around time, (7) time to room the patient back in the UCC, and (8) time until the ordering physician views the film. Waiting room time was longer in 1997 (average time, 26∶47) versus 1995 (average time, 15∶54). The technologist’s examination completion time was approximately the same (1995 average time, 06∶12; 1997 average time, 05∶41). There was also a slight increase in the time of the technologist’s electronic verification or quality control in 1997 (average time, 7∶17) versus the film-based practice in 1995 (average time, 2∶35). However, radiology interpretation times dramatically improved (average time, 49∶38 in 1995 versus average time 13∶50 in 1997). There was also a decrease in image delivery times to the clinicians in 1997 (median, 53 minutes) versus the film based practice of 1995 (1 hour and 40 minutes). Reports were available with the images immediately upon completion by the radiologist in 1997, compared with a median time of 27 minutes in 1995. Importantly, patients were roomed back into the UCC examination rooms faster after the radiologic procedure in 1997 (average time, 13∶36) than they were in 1995 (29∶38). Finally, the ordering physicians viewed the diagnostic images and reports in dramatically less time in 1997 (median, 26 minutes) versus 1995 (median, 1 hour and 5 minutes). In conclusion, a filmless electronic imaging practice within our UCC greatly improved radiology image and report delivery times, as well as improved clinical efficiency.
doi:10.1007/BF03168787
PMCID: PMC3452886  PMID: 10342198
21.  Evaluating a picture archiving and communications system workstation 
Journal of Digital Imaging  1999;12(Suppl 1):223-225.
An efficient environment for picture archiving and communications systems (PACS) in the radiology department and throughout a medical practice requires good hardware, good software, and integration of the information sources that exist in a radiology department and institution. This tutorial will describe some of the considerations in evaluating a PACS workstation, with a view to the hardware requirements, user interface designs and integration with the information systems.
doi:10.1007/BF03168811
PMCID: PMC3452896  PMID: 10342222
22.  The evolution of electronic imaging in the medical environment 
Journal of Digital Imaging  1998;11(Suppl 1):71-74.
doi:10.1007/BF03168264
PMCID: PMC3453350  PMID: 9735437
23.  Clinician usage patterns of a desktop radiology information display application 
Journal of Digital Imaging  1998;11(Suppl 1):137-141.
We developed a system for delivering radiologic images and reports to desktop computers used for the electronic medical record (EMR). This system was used by both primary care physicians and specialists primarily in the out-patient setting. The system records all physician interactions with the application to a database. This usage information was then studied in order to understand the value and requirements of an application that could display radiology information (reports and images) on EMR workstations. In this report we describe some of the differences and similarities in usage patterns for the two physician groups. A very high percentage of physicians indicated that having image display capabilities on the workstations was very valuable.
doi:10.1007/BF03168285
PMCID: PMC3453362  PMID: 9735452
PACS; Computerized patient record; electronic medical record
24.  An algorithm for automatic segmentation and classification of magnetic resonance brain images 
Journal of Digital Imaging  1998;11(2):74-82.
In this article, we describe the development and validation of an automatic algorithm to segment brain from extracranial tissues, and to classify intracranial tissues as cerebrospinal fluid (CSF), gray matter (GM), white matter (WM) or pathology. T1 weighted spin echo, dual echo fast spin echo (T2 weighted and proton density (PD) weighted images) and fast Fluid Attenuated Inversion Recovery (FLAIR) magentic resonance (MR) images were acquired ino 100 normal patients and 9 multiple sclerosis (MS) patients. One of the normal studies had synthesized MS-like lesions superimposed. This allowed precise measurement of the accuracy of the classification. The 9 MS patients were imaged twice in one week. The algorithm was applied to these data sets to measure reproducibility. The accuracy was measured based on the synthetic lesion images, where the true voxel class was known. Ninety-six percent of normal intradural tissue voxels (GM, WM, and CSF) were labeled correctly, and 94% of pathological tissues were labeled correctly. A low coefficient of variation (COV) was found (mean, 4.1%) for measurement of brain tissues and pathology when comparing MRI scans on the 9 patients. A totally automatic segmentation algorithm has been described which accurately and reproducibly segments and classifies intradural tissues based on both synthetic and actual images.
doi:10.1007/BF03168729
PMCID: PMC3452992  PMID: 9608930
automatic multiparametric classification; brain segmentation; multiple sclerosis (MS); magnetic resonance imaging (MRI)
25.  Evaluating a picture archiving communication system workstation 
Journal of Digital Imaging  1997;10(Suppl 1):12-13.
Conclusion
A successful PACS implementation requires well-designed hardware, a thoughtful software implementation, and a high degree of integration of PACS and RIS information. Although it may be difficult to avoid some of the technical jargon, perhaps the most important evaluation step is to sit at a workstation and see if the image display metaphor is one that can conform to your image interpretation style. Finally, integration of RIS and PACS is crucial.
doi:10.1007/BF03168641
PMCID: PMC3452793  PMID: 9268823

Results 1-25 (30)