PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
issn:1618-727
1.  Automatic Segmentation of the Ribs, the Vertebral Column, and the Spinal Canal in Pediatric Computed Tomographic Images 
Journal of Digital Imaging  2009;23(3):301-322.
We propose methods to perform automatic identification of the rib structure, the vertebral column, and the spinal canal in computed tomographic (CT) images of pediatric patients. The segmentation processes for the rib structure and the vertebral column are initiated using multilevel thresholding and the results are refined using morphological image processing techniques with features based on radiological and anatomical prior knowledge. The Hough transform for the detection of circles is applied to a cropped edge map that includes the thoracic vertebral structure. The centers of the detected circles are used to derive the information required for the opening-by-reconstruction algorithm used to segment the spinal canal. The methods were tested on 39 CT exams of 13 patients; the results of segmentation of the vertebral column and the spinal canal were assessed quantitatively and qualitatively by comparing with segmentation performed independently by a radiologist. Using 13 CT exams of six patients, including a total of 458 slices with the vertebra from different sections of the vertebral column, the average Hausdorff distance was determined to be 3.2 mm with a standard deviation (SD) of 2.4 mm; the average mean distance to the closest point (MDCP) was 0.7 mm with SD = 0.6 mm. Quantitative analysis was also performed for the segmented spinal canal with three CT exams of three patients, including 21 slices with the spinal canal from different sections of the vertebral column; the average Hausdorff distance was 1.6 mm with SD = 0.5 mm, and the average MDCP was 0.6 mm with SD = 0.1 mm.
doi:10.1007/s10278-009-9176-x
PMCID: PMC3046651  PMID: 19219504
Computed tomographic (CT) images; vertebral column; rib structure; spinal canal; morphological image processing; opening-by-reconstruction; image segmentation; Hough transform; convex hull
2.  Automatic Delineation of the Diaphragm in Computed Tomographic Images 
Journal of Digital Imaging  2008;21(Suppl 1):134-147.
Segmentation of the internal organs in medical images is a difficult task. By incorporating a priori information regarding specific organs of interest, results of segmentation may be improved. Landmarking (i.e., identifying stable structures to aid in gaining more knowledge concerning contiguous structures) is a promising segmentation method. Specifically, segmentation of the diaphragm may help in limiting the scope of segmentation methods to the abdominal cavity; the diaphragm may also serve as a stable landmark for identifying internal organs, such as the liver, the spleen, and the heart. A method to delineate the diaphragm is proposed in the present work. The method is based upon segmentation of the lungs, identification of the lower surface of the lungs as an initial representation of the diaphragm, and the application of least-squares modeling and deformable contour models to obtain the final segmentation of the diaphragm. The proposed procedure was applied to nine X-ray computed tomographic (CT) exams of four pediatric patients with neuroblastoma. The results were evaluated against the boundaries of the diaphragm as identified independently by a radiologist. Good agreement was observed between the results of segmentation and the reference contours drawn by the radiologist, with an average mean distance to the closest point of 5.85 mm over a total of 73 CT slices including the diaphragm.
doi:10.1007/s10278-007-9091-y
PMCID: PMC3043881  PMID: 18213486
Computer-assisted image interpretation; X-ray computed tomography; landmark-based segmentation; diaphragm; deformable contour model; linear least-squares model; active contours
3.  Three-Dimensional Segmentation of the Tumor in Computed Tomographic Images of Neuroblastoma 
Journal of Digital Imaging  2006;20(1):72-87.
Segmentation of the tumor in neuroblastoma is complicated by the fact that the mass is almost always heterogeneous in nature; furthermore, viable tumor, necrosis, and normal tissue are often intermixed. Tumor definition and diagnosis require the analysis of the spatial distribution and Hounsfield unit (HU) values of voxels in computed tomography (CT) images, coupled with a knowledge of normal anatomy. Segmentation and analysis of the tissue composition of the tumor can assist in quantitative assessment of the response to therapy and in the planning of delayed surgery for resection of the tumor. We propose methods to achieve 3-dimensional segmentation of the neuroblastic tumor. In our scheme, some of the normal structures expected in abdominal CT images are delineated and removed from further consideration; the remaining parts of the image volume are then examined for the tumor mass. Mathematical morphology, fuzzy connectivity, and other image processing tools are deployed for this purpose. Expert knowledge provided by a radiologist in the form of the expected structures and their shapes, HU values, and radiological characteristics are incorporated into the segmentation algorithm. In this preliminary study, the methods were tested with 10 CT exams of four cases from the Alberta Children's Hospital. False-negative error rates of less than 12% were obtained in eight of the 10 exams; however, seven of the exams had false-positive error rates of more than 20% with respect to manual segmentation of the tumor by a radiologist.
doi:10.1007/10278-006-0769-3
PMCID: PMC3043888
3D image segmentation; neuroblastoma; computed tomography; fuzzy connectivity; tumor segmentation

Results 1-3 (3)