Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)
Year of Publication
Document Types
1.  Expression of Wnt9, TCTP, and Bmp1/Tll in sea cucumber visceral regeneration 
Gene Expression Patterns  2011;12(1-2):24-35.
We employ non-radioactive in situ hybridization techniques, which combine good tissue morphology preservation with high sensitivity of transcript detection, to map gene expression in the regenerating digestive tube of the sea cucumber Holothuria glaberrima. We investigated localization of transcripts of Wnt9, TCTP, Bmp1/Tll, the genes that have been previously known to be implicated in embryogenesis and cancer. The choice was determined by our long-term goal of trying to understand how the developmental regulatory pathways known to be involved in tumor development can be activated in post-traumatic regeneration without leading to malignant growth. The gene expression data combined with the available morphological information highlight the gut mesothelium (the outer layer of the digestive tube) as a highly dynamic tissue, whose cells undergo remarkable changes in their phenotype and gene expression in response to injury. This reversible transition of the gut mesothelium from a complex specialized tissue to a simple epithelium composed of rapidly proliferating multipotent cells seems to depend on the expression of genes from multiple developmental/cancer-related pathways.
PMCID: PMC3272084  PMID: 22079950
2.  Identification of hunchback cis-regulatory DNA conferring temporal expression in neuroblasts and neurons 
Gene Expression Patterns  2011;12(1-2):11-17.
The specification of temporal identity within single progenitor lineages is essential to generate functional neuronal diversity in Drosophila and mammals. In Drosophila, four transcription factors are sequentially expressed in neural progenitors (neuroblasts) and each regulates the temporal identity of the progeny produced during its expression window. The first temporal identity is established by the Ikaros-family zinc finger transcription factor Hunchback (Hb). Hb is detected in young (newly-formed) neuroblasts for about an hour and is maintained in the early-born neurons produced during this interval. Hb is necessary and sufficient to specify early-born neuronal or glial identity in multiple neuroblast lineages. The timing of hb expression in neuroblasts is regulated at the transcriptional level. Here we identify the cis-regulatory elements that confer proper hb expression in “young” neuroblasts and early-born neurons. We show that the neuroblast element contains clusters of predicted binding sites for the Seven-up transcription factor, which is known to limit hb neuroblast expression. We identify highly conserved sequences in the neuronal element that are good candidates for maintaining Hb transcription in neurons. Our results provide the necessary foundation for identifying trans-acting factors that establish the Hb early temporal expression domain.
PMCID: PMC3272097  PMID: 22033538
3.  Expression pattern of polyketide synthase-2 during sea urchin development 
Gene Expression Patterns  2011;12(1-2):7-10.
PMCID: PMC3272118  PMID: 22001775
4.  Dynamic expression of Tbx2 and Tbx3 in developing mouse pancreas 
Gene expression patterns : GEP  2011;11(8):476-483.
Tbx2 and Tbx3 are closely related members of the T-box family of transcription factors that are important regulators during normal development as well as major contributors to human developmental syndromes when mutated. Although there is evidence for the involvement of Tbx2 and Tbx3 in pancreatic cancer, so far there are no reports characterizing the normal expression pattern of these genes in the pancreas. In this study, we examined spatial and temporal expression of Tbx2 and Tbx3 in mouse pancreas during development and in the adult using in situ hybridization and immunohistochemistry. Our results show that Tbx2 and Tbx3 are both expressed in the pancreatic mesenchyme throughout development beginning at embryonic day (E) 9.5. In addition, Tbx2 is expressed in pancreatic vasculature during development and in epithelial-derived endocrine and ductal cells during late fetal stages, postnatal development and in adult pancreas. In contrast, Tbx3 is expressed in exocrine tissue in the postnatal and adult pancreas. Further our results demonstrate that Tbx2 and Tbx3 are expressed in tumor-derived endocrine and exocrine cell lines, respectively. These dynamic changes in the expression pattern of these transcription factors lay the foundation for investigation of potential roles in pancreas development.
PMCID: PMC3200443  PMID: 21867776
Tbx2; Tbx3; T-box; Pancreas; Islets
5.  Molecular and Functional Analysis of Drosophila single-minded Larval Central Brain Expression 
Gene expression patterns : GEP  2011;11(8):533-546.
Developmental regulatory proteins are commonly utilized in multiple cell types throughout development. The Drosophila single-minded (sim) gene acts as master regulator of embryonic CNS midline cell development and transcription. However, it is also expressed in the brain during larval development. In this paper, we demonstrate that sim is expressed in 3 clusters of anterior central brain neurons: DAMv1/2, BAmas1/2, and TRdm and in 3 clusters of posterior central brain neurons: a subset of DPM neurons, and two previously unidentified clusters, which we term PLSC and PSC. In addition, sim is expressed in the lamina and medulla of the optic lobes. MARCM studies confirm that sim is expressed at high levels in neurons but is low or absent in neuroblasts (NBs) and ganglion mother cell (GMC) precursors. In the anterior brain, sim+ neurons are detected in 1st and 2nd instar larvae but rapidly increase in number during the 3rd instar stage. To understand the regulation of sim brain transcription, 12 fragments encompassing 5’-flanking, intronic, and 3’-flanking regions were tested for the presence of enhancers that drive brain expression of a reporter gene. Three of these fragments drove expression in sim+ brain cells, including all sim+ neuronal clusters in the central brain and optic lobes. One fragment upstream of sim is autoregulatory and is expressed in all sim+ brain cells. One intronic fragment drives expression in only the PSC and laminar neurons. Another downstream intronic fragment drives expression in all sim+ brain neurons, except the PSC and lamina. Thus, together these two enhancers drive expression in all sim+ brain neurons. Sequence analysis of existing sim mutant alleles identified 3 likely null alleles to utilize in MARCM experiments to examine sim brain function. Mutant clones of DAMv1/2 neurons revealed a consistent axonal fasciculation defect. Thus, unlike the embryonic roles of sim that control CNS midline neuron and glial formation and differentiation, postembryonic sim, instead, controls aspects of axon guidance in the brain. This resembles the roles of vertebrate Sim that have an early role in neuronal migration and a later role in axonogenesis.
PMCID: PMC3200459  PMID: 21945234
Autoregulation; Axon guidance; Brain; Drosophila; Enhancer; Optic lobes; single-minded
6.  A zebrafish SKIV2L2-enhancer trap line provides a useful tool for the study of peripheral sensory circuit development 
Gene expression patterns : GEP  2011;11(7):409-414.
The zebrafish is an ideal model for elucidating the cellular and molecular mechanisms that underlie development of the peripheral nervous system. A transgenic line that selectively labels all the sensory circuits would be a valuable tool for such investigations. In this study, we describe such a line: the enhancer trap zebrafish line Tg(SKIV2L2:gfp)j1775 which expresses green fluorescent protein (gfp) in the peripheral sensory ganglia. We show that this transgene marks all peripheral ganglia and sensory nerves, beginning at the time when the neurons are first extending their processes, but does not label the efferent nerves. The trapped reporter is inserted just upstream of a previously poorly described gene: lhfpl4 on LG6. The expression pattern of this gene by in situ hybridization reveals a different, but overlapping, pattern of expression compared to that of the transgene. This pattern also does not mimic that of the gene (skiv2l2), which provided the promoter element in the construct. These findings indicate that reporter expression is not dictated by an endogenous enhancer element, but instead arises through an unknown mechanism. Regardless, this reporter line should prove to be a valuable tool in the investigation of peripheral nervous system formation in the zebrafish.
PMCID: PMC3163734  PMID: 21742057
7.  A BAC transgenic Hes1-EGFP reporter reveals novel expression domains in mouse embryos 
Gene expression patterns : GEP  2011;11(7):415-426.
Expression of the basic helix-loop-helix factor Hairy and Enhancer of Split-1 (Hes1) is required for normal development of a number of tissues during embryonic development. Depending on context, Hes1 may act as a Notch signalling effector which promotes the undifferentiated and proliferative state of progenitor cells, but increasing evidence also points to Notch independent regulation of Hes1 expression. Here we use high resolution confocal scanning of EGFP in a novel BAC transgenic mouse reporter line, Tg(Hes1-EGFP)1Hri, to analyse Hes1 expression from embryonic day 7.0 (e7.0). Our data recapitulates some previous observations on Hes1 expression and suggests new, hitherto unrecognised expression domains including expression in the definitive endoderm at early somite stages before gut tube closure and thus preceding organogenesis. This mouse line will be a valuable tool for studies addressing the role of Hes1 in a number of different research areas including organ specification, development and regeneration.
PMCID: PMC3163761  PMID: 21745596
8.  Live imaging of endogenous Collapsin response mediator protein-1 expression at subcellular resolution during zebrafish nervous system development 
Gene expression patterns : GEP  2011;11(7):395-400.
Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are functionally important during vertebrate development. We have generated a zebrafish genetrap line that produces fluorescently tagged Crmp1 protein, which can be dynamically tracked in living fish at subcellular resolution. The results show that Crmp1 is expressed in numerous sites in the developing nervous system. Early expression is apparent in the forebrain, epiphysis, optic tectum and the developing spinal cord. In the larval brain, Crmp1 is expressed in several distinct brain regions, such as the telencephalon, habenula and cerebellum. In addition, it is expressed in the spinal cord in a manner that persists in the larva. The results suggest that this Crmp1 protein trap line offers a powerful tool to track selected neuronal populations at high resolution.
PMCID: PMC3163798  PMID: 21628002
Crmp1; zebrafish; nervous system; development
9.  Genes expressed in Atoh1 neuronal lineages arising from the r1/isthmus rhombic lip 
Gene expression patterns : GEP  2011;11(5-6):349-359.
During embryogenesis, the rhombic lip of the fourth ventricle is the germinal origin of a diverse collection of neuronal populations that ultimately reside in the brainstem and cerebellum. Rhombic lip neurogenesis requires the bHLH transcription factor Atoh1 (Math1), and commences shortly after neural tube closure (E9.5). Within the rhombomere 1 – isthmus region, the rhombic lip first produces brainstem and deep cerebellar neurons (E9.5-E12), followed by granule cell precursors after E12. While Atoh1 function is essential for all of these populations to be specified, the downstream genetic programs that confer specific properties to early and late born Atoh1 lineages are not well characterized. We have performed a comparative microarray analysis of gene expression within early and later born cohorts of Atoh1 expressing neural precursors purified from E14.5 embryos using a transgenic labeling strategy. We identify novel transcription factors, cell surface molecules, and cell cycle regulators within each pool of Atoh1 lineages that likely contribute to their distinct developmental trajectories and cell fates. In particular, our analysis reveals new insights into the genetic programs that regulate the specification and proliferation of granule cell precursors, the putative cell of origin for the majority of medulloblastomas.
PMCID: PMC3095718  PMID: 21440680
rhombic lip; Atoh1; Math1; cerebellum; neurogenesis; rhombomere 1
10.  Temporal pattern of the posterior expression of Wingless in Drosophila blastoderm 
Gene expression patterns : GEP  2011;11(7):456-463.
In most animals, the Antero-Posterior (A-P) axis requires a gradient of Wnt signaling. Wnts are expressed posteriorly in many vertebrate and invertebrate embryos, forming a gradient of canonical Wnt/β-Catenin activity that is highest in the posterior and lowest in the anterior. One notable exception to this evolutionary conservation is in the Drosophila embryo, in which the A-P axis is established by early transcription factors of maternal origin. Despite this initial axial establishment, Drosophila still expresses Wingless (Wg), the main Drosophila Wnt homologue, in a strong posterior band early in embryogenesis. Since its discovery 30 years ago this posterior band of Wg has been largely ignored. In this study, we re-examined the onset of expression of the Wg posterior band in relation to the expression of Wg in other segments, and compared the timing of its expression to that of axial regulators such as gap and pair-rule genes. It was found that the posterior band of Wg is first detected in blastoderm at mid nuclear cycle 14, before the segment-polarity stripes of Wg are formed in other segments. The onset of the posterior band of Wg expression was preceded by that of the gap gene products Hunchback (hb) and Krüppel (Kr), and the pair-rule protein Even-skipped (Eve). Although the function of the posterior band of Wg was not analyzed in this study, we note that in temperature-sensitive Wg mutants, in which Wg is not properly secreted, the posterior band of Wg expression is diminished in strength, indicating a positive feedback loop required for Wg robust expression at the cellular blastoderm stage. We propose that this early posterior expression could play a role in the refinement of A-P patterning.
PMCID: PMC3200307  PMID: 21821151
Wnt; antero-posterior patterning; gap genes; pair-rule genes; evo-devo
11.  Expression analysis of the Islet-1 gene in the developing and adult gastrointestinal tract 
Gene expression patterns : GEP  2011;11(3-4):244-254.
LIM-Homeodomain genes encode a family of proteins defined by the cysteine-rich protein/protein interacting (Lin-11, Isl-1, and Mec-3) LIM domain and a highly conserved DNA-binding domain. Studies in several organisms have shown that these transcriptional regulators control multiple aspects of embryonic development and are responsible for the pathogenesis of several human diseases. Here we report the expression of Islet-1 (Isl-1) in the gastrointestinal epithelium in developing and adult mice. At embryonic day (E) 9.5–10.5, Isl-1 expression was first detected in the ventral gastric mesenchyme, and expression in the dorsal mesenchyme initiated a few days later. Isl-1 expression was first observed in the gastric epithelium at E13.5 and at E14.5 was restricted to the posterior half of the stomach. In the mature stomach, Isl-1 expression was detected only in subsets of enteroendocrine cells. Furthermore, Isl-1 expression in the intestinal epithelium was first detected at E15.5 and was restricted to subpopulations of enteroendocrine cells in adult mice. These expression analyses suggest that Isl-1 might have an early broad role in stomach and intestinal cells and a secondary role in terminal differentiation and/or maintenance of mature enteroendocrine subtypes in the gastrointestinal epithelium.
PMCID: PMC3065958  PMID: 21220053
Islet-1; stomach; intestine; gastrointestinal tract; development; transcriptional control; endocrine cell differentiation; somatostatin; gastrin; ghrelin
12.  Ontological aspects of pluripotency and stemness gene expression pattern in the rhesus monkey 
Gene expression patterns : GEP  2011;11(3-4):285-298.
Two essential aspects of mammalian development are the progressive specialization of cells toward different lineages, and the maintenance of progenitor cells that will give rise to the differentiated components of each tissue and also contribute new cells as older cells die or become injured. The transition from totipotentiality to pluripotentiality, to multipotentiality, to monopotentiality, and then to differentiation is a continuous process during development. The ontological relationship between these different stages is not well understood. We report for the first time an ontological survey of expression of 45 putative “stemness” and “pluripotency” genes in rhesus monkey oocytes and preimplantation stage embryos, and comparison to the expression in the inner cell mass, trophoblast stem cells, and a rhesus monkey (ORMES6) embryonic stem cell line. Our results reveal that some of these genes are not highly expressed in all totipotent or pluripotent cell types. Some are predominantly maternal mRNAs present in oocytes and embryos before transcriptional activation, and diminishing before the blastocyst stage. Others are well expressed in morulae or early blastocysts, but are poorly expressed in later blastocysts or ICMs. Also, some of the genes employed to induce pluripotent stem cells from somatic cells (iPS genes) appear unlikely to play major roles as stemness or pluripotency genes in normal embryos.
PMCID: PMC3109727  PMID: 21329766
stem cell; cell lineage; embryo; trophoblast
13.  Characterisation of the Drosophila procollagen lysyl hydroxylase, dPlod 
Gene Expression Patterns  2011;11(1-2):72-78.
The lysyl hydroxylase (LH) family of enzymes has important roles in the biosynthesis of collagen. In this paper we present the first description of Drosophila LH3 (dPlod), the only lysyl hydroxylase encoded in the fly genome. We have characterised in detail the developmental expression patterns of dPlod RNA and protein during embryogenesis. Consistent with its predicted function as a collagen-modifying enzyme, we find that dPlod is highly expressed in type-IV collagen-producing cells, particularly the haemocytes and fat body. Examination of dPlod subcellular localisation reveals that it is an endoplasmic reticulum resident protein, that partially overlaps with intracellular type-IV collagen. Furthermore, we show that dPlod is required for type-IV collagen secretion from haemocytes and fat body, and thus establish that LH3 enzyme function is conserved across widely separated animal phyla. Our findings, and the new tools we describe, establish the fly as an attractive model in which to study this important collagen biosynthesis enzyme.
PMCID: PMC3044864  PMID: 20888931
Drosophila; dPlod; Plod; Collagen; Lysyl hydroxylase; LH3

Results 1-13 (13)