Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)
Year of Publication
Document Types
1.  Immunohistochemical analysis of sphingosine phosphate lyase expression during murine development 
Gene expression patterns : GEP  2012;13(1-2):21-29.
Sphingosine-1-phosphate lyase (SPL) catalyzes the degradation of sphingosine-1-phosphate (S1P), a bioactive lipid that controls cell proliferation, migration and survival. Mice lacking SPL expression exhibit developmental abnormalities, runting and death during the perinatal period, suggesting that SPL plays a role in mammalian development and adaptation to extrauterine life. We investigated the pattern of SPL expression in the mouse embryo and placenta from day 8 to day 18. Our findings reveal that SPL is expressed in the developing brain and neural tube, Rathke’s pouch, first brachial arch, third brachial arch, optic stalk, midgut loops, and lung buds. Diffuse signal was high at E12, whereas a recognizable adult SPL pattern was evident by E15 and more intensely at E18, with strong expression in skin, nasal epithelium, intestinal epithelium, cartilage, thymus and pituitary gland. These findings suggest SPL may be involved in development of the mammalian central nervous system (CNS), anterior pituitary, trigeminal nerve, palate and facial bones, thymus and other organs. Our findings are consistent with the SPL expression pattern of the adult mouse and with congenital abnormalities observed in SPL mutant mice.
PMCID: PMC3562366  PMID: 23041657
sphingosine-1-phosphate; sphingosine phosphate lyase; S1P lyase; Sgpl1; embryogenesis; sphingolipid
2.  Expression of the Foxi2 and Foxi3 transcription factors during development of chicken sensory placodes and pharyngeal arches 
Gene expression patterns : GEP  2012;13(1-2):38-42.
Foxi2 and Foxi3 are members of the Foxi class of Forkhead transcription factors. The Foxi transcription factor family has been shown to play roles in the development of the inner ear and pharyngeal arch derivatives in zebrafish. We describe the expression of Foxi2 and Foxi3 in chicken embryos during the first three days of embryonic development. Foxi3 is initially expressed broadly in the pre-placodal ectoderm surrounding the neural plate, which will give rise to all craniofacial sensory organs. It then becomes restricted to a region immediately anterior to the first pair of somites that will give rise to the otic and epibranchial placodes, before becoming down-regulated from this region and restricted to the ectoderm and endoderm of the pharyngeal arches. In contrast, Foxi2 is initially expressed broadly in cranial ectoderm with the striking exception of the otic placode, and ultimately becomes restricted to pharyngeal arch ectoderm. These expression patterns provide an insight into the roles of these transcriptional regulators during the development of the inner ear and pharyngeal arch derivatives.
PMCID: PMC3562376  PMID: 23124078
Otic placode; Pharyngeal arch; Craniofacial development; Pre-placodal domain
3.  Comparative gene expression analysis of the fmnl family of formins during zebrafish development and implications for tissue specific functions 
Gene expression patterns : GEP  2012;13(1-2):30-37.
Fmlns belong to the Formin family, catalysts of linear Actin polymerization with mostly unknown roles in vivo. In cell culture Fmnls are involved in cell migration and adhesion and the formation of different types of protrusions including filopodia and blebs, suggesting important roles during development. Moreover, Fmnls can act downstream of Rac and Cdc42, mediators of cytoskeletal changes as targets of important pathways required for shaping tissues. The zebrafish genome encodes five Fmnls. Here we report their tissue specific expression patterns during early development and pharyngula stages. The fmnls show overlapping and distinct expression patterns, which suggest that they could regulate similar processes during development, but may also have independent functions. In particular, we find a strong maternal contribution of all fmnls, but distinct expression patterns in the developing brain eye, ear, heart and vascular system.
PMCID: PMC3562391  PMID: 23072729
Actin; vascular system; visual system; otic vesicles; brain
4.  Cloning and expression analysis of Fgf5, 6 and 7 during early chick development 
Gene expression patterns : GEP  2012;12(7-8):245-253.
FGFs1 with similar sequences can play different roles depending on the model organisms examined. Determining these roles requires knowledge of spatio-temporal Fgf gene expression patterns. In this study, we report the cloning of chick Fgf5, 6 and 7, and examine their gene expression patterns by whole mount in situ hybridization. We show that Fgf5's spatio-temporally restricted expression pattern indicates a potentially novel role during inner ear development. Fgf6 and Fgf7, although belonging to different subfamilies with diverged sequences, are expressed in similar patterns within the mesoderm. Alignment of protein sequences and phylogenetic analysis demonstrate that FGF5 and FGF6 are highly conserved between chick, human, mouse and zebrafish. FGF7 is similarly conserved except for the zebrafish, which has considerably diverged.
PMCID: PMC3434314  PMID: 22634565
Development; Fibroblast growth factor; otic placode; pharyngeal arch; pharyngeal endoderm
Gene expression patterns : GEP  2012;12(7-8):228-235.
Sclerostin is a highly conserved, secreted, cystine-knot protein which regulates osteoblast function. Humans with mutations in the sclerostin gene (SOST), manifest increased axial and appendicular skeletal bone density with attendant complications. In adult bone, sclerostin is expressed in osteocytes and osteoblasts. Danio rerio sclerostin-like protein is closely related to sea bass sclerostin, and is related to chicken and mammalian sclerostins. Little is known about the expression of sclerostin in early developing skeletal or extra-skeletal tissues. We assessed sclerostin (sost) gene expression in developing zebrafish (Danio rerio) embryos with whole mount is situ hybridization methods. The earliest expression of sost RNA was noted during 12 hours post-fertilization (hpf). At 15 hpf, sost RNA was detected in the developing nervous system and in Kupffer’s vesicle. At 18, 20 and 22 hpf, expression in rhombic lip precursors was seen. By 24 hpf, expression in the upper and lower rhombic lip and developing spinal cord was noted. Expression in the rhombic lip and spinal cord persisted through 28 hpf and then diminished in intensity through 44 hpf. At 28 hpf, sost expression was noted in developing pharyngeal cartilage; expression in pharyngeal cartilage increased with time. By 48 hpf, sost RNA was clearly detected in the developing pharyngeal arch cartilage. Sost RNA was abundantly expressed in the pharyngeal arch cartilage, and in developing pectoral fins, 72, 96 and 120 hpf. Our study is the first detailed analysis of sost gene expression in early metazoan development.
PMCID: PMC3435489  PMID: 22575304
Sclerostin; sost; skeleton; cartilage; brain
6.  The cis- Regulatory Dynamics of the Drosophila CNS Determinant castor are Controlled by Multiple Sub-Pattern Enhancers 
Gene expression patterns : GEP  2012;12(7-8):261-272.
In the developing CNS, unique functional identities among neurons and glia are, in part, established as a result of successive transitions in gene expression programs within neural precursor cells. One of the temporal-identity windows within Drosophila CNS neural precursor cells or neuroblasts (NBs) is marked by the expression of a zinc-finger transcription factor (TF) gene, castor (cas). Our analysis of cis-regulatory DNA within a cas loss-of-function rescue fragment has identified seven enhancers that independently activate reporter transgene expression in specific sub-patterns of the wild-type embryonic cas gene expression domain. Most of these enhancers also regulate different aspects of cas expression within the larval and adult CNS. Phylogenetic footprinting reveals that each enhancer is made up of clusters of highly conserved DNA sequence blocks that are flanked by less-conserved inter-cluster spacer sequences. Comparative analysis of the conserved DNA also reveals that cas enhancers share different combinations of sequence elements and many of these shared elements contain core DNA-binding recognition motifs for characterized temporal-identity TFs. Intra-species alignments show that two of the sub-pattern enhancers originated from an inverted duplication and that this repeat is unique to the cas locus in all sequenced Drosophila species. Finally we show that three of the enhancers differentially require cas function for their wild-type regulatory behavior. Cas limits the expression of one enhancer while two others require cas function for full expression. These studies represent a starting point for the further analysis of cas gene expression and the TFs that regulate it.
PMCID: PMC3436978  PMID: 22691242
Drosophila CNS development; cis-regulatory DNA; sub-pattern enhancers; DNA sequence conservation; castor gene regulation
7.  Rb1 mRNA expression in developing mouse teeth 
Gene expression patterns : GEP  2012;10.1016/j.gep.2012.01.004.
Rb1 is a tumor suppressor gene that regulates cell cycle progression through interactions with E2F transcription factors. In recent years, new roles for Rb1 in regulating cellular differentiation have also emerged. For example, it has been shown that Rb1 regulates osteoblast differentiation in a cell cycle independent manner, by binding to the transcription factor Runx2, and facilitating the up-regulation of late bone differentiation markers. Based on the facts that Runx2 also functions in tooth development, and that little is known about potential roles for Rb1 in mammalian tooth development, here we evaluated the expression of Rb1 mRNA in developmentally staged mouse teeth. Our data show that Rb1 mRNA is expressed in both dental epithelial and dental mesenchymal progenitor cells. In addition, Rb1 mRNA appears upregulated in differentiating ameloblasts and odontoblasts, suggesting roles for Rb1 in tooth differentiation.
PMCID: PMC3442146  PMID: 22300525
Rb1; tooth development; dental epithelium; dental mesenchyme; cell-cell signaling
8.  Segment - and Cell- Specific Expression of D-type Cyclins in the Postnatal Mouse Epididymis 
Gene expression patterns : GEP  2012;10.1016/j.gep.2012.01.003.
Sperm transport, maturation and storage are the essential functions of the epididymis. The epididymis in the mouse is structurally characterized by regional and segmental organization including caput, corpus and cauda epididymis that are comprised of ten segments. Although several growth factor signaling pathways have been discovered in the epididymis, how these converge onto the cell cycle components is unknown. To begin to elucidate the growth factor control of cell cycle events in the epididymis, we analyzed the expression of D-type cyclins at different postnatal ages. At 7d, cyclin D1 was mainly expressed in the cauda epithelium, by 14d its expression occurred in the epithelium of caput, corpus and cauda that persisted up to 21d. By 42d, cyclin D1 was mostly detectable in the principal cells of the caput and corpus (segments 1–7) but not in the cauda epididymis. Expression of cyclin D2, unlike that of cyclin D1, was evident only at 42d but not earlier, and was mostly confined to corpus and cauda epithelium. In contrast to both cyclin D1 and D2, cyclin D3 was expressed primarily in the interstitium at 7d and by 21d its expression was localized to the epithelium of the corpus and cauda epididymis. By 42d, expression of cyclin D3 peaked in segments 6–10 and confined to basal and principal cells of the corpus and apical cells of the cauda epithelium. Ki67 immunoreactivity confirmed absence of cell proliferation despite continued expression of D-type cyclins in the adult epididymis. Collectively, on the basis of our immunophenotyping and protein expression data, we conclude that the D-type cyclins are expressed in a development -, segment-, and cell- specific manner in the postnatal mouse epididymis.
PMCID: PMC3376213  PMID: 22289519
Epididymis; Cyclin D1; Cyclin D2; Cyclin D3; Ki67
9.  Mustn1 is essential for craniofacial chondrogenesis during Xenopus development 
Gene expression patterns : GEP  2012;10.1016/j.gep.2012.01.002.
Mustn1 is a vertebrate-specific protein that, in vitro, was showed to be essential for prechondrocyte function and thus it has the potential to regulate chondrogenesis during embryonic development. We use Xenopus laevis as a model to examine Mustn1 involvement in chondrogenesis. Previous work suggests that Mustn1 is necessary but not sufficient for chondrogenic proliferation and differentiation, as well as myogenic differentiation in vitro. Mustn1 was quantified and localized in developing Xenopus embryos using RT-PCR and whole mount in situ hybridization. Xenopus embryos were injected with either control morpholinos (Co-MO) or one designed against Mustn1 (Mustn1-MO) at the 4 cell stage. Embryos were scored for morphological defects and Sox9 was visualized via in situ hybridization. Finally, Mustn1-MO-injected embryos were co-injected with Mustn1-MO resistant mRNA to confirm the specificity of the observed phenotype. Mustn1 is expressed from the mid-neurula stage to the swimming tadpole stages, predominantly in anterior structures including the pharyngeal arches and associated craniofacial tissues, and the developing somites. Targeted knockdown of Mustn1 in craniofacial and dorsal axial tissues resulted in phenotypes characterized by small or absent eye(s), a shortened body axis, and tail kinks. Further, Mustn1 knockdown reduced cranial Sox9 mRNA expression and resulted in the loss of differentiated cartilaginous head structures (e.g. ceratohyal and pharyngeal arches). Reintroduction of MO-resistant Mustn1 mRNA rescued these effects. We conclude that Mustn1 is necessary for normal craniofacial cartilage development in vivo, although the exact molecular mechanism remains unknown.
PMCID: PMC3348343  PMID: 22281807
Xenopus; Mustn1; chondrogenesis; Sox9; morpholino; knockdown; craniofacial; somite
10.  Spatiotemporal expression pattern of KIF21A during normal embryonic development and in congenital fibrosis of the extraocular muscles type 1 (CFEOM1) 
Gene Expression Patterns  2012;12(5-6):180-188.
Congenital fibrosis of the extraocular muscles type 1 (CFEOM1) is a rare inherited strabismus syndrome characterized by non-progressive ophthalmoplegia. We previously identified that CFEOM1 results from heterozygous missense mutations in KIF21A, which encodes a kinesin motor protein. Here we evaluate the expression pattern of KIF21A in human brain and muscles of control and CFEOM1 patients, and during human and mouse embryonic development. KIF21A is expressed in the cell bodies, axons, and dendrites of many neuronal populations including those in the hippocampus, cerebral cortex, cerebellum, striatum, and motor neurons of the oculomotor, trochlear, and abducens nuclei from early development into maturity, and its spatial distribution is not altered in the CFEOM1 tissues available for study. Multiple splice isoforms of KIF21A are identified in human fetal brain, but none of the reported CFEOM1 mutations are located in or near the alternatively spliced exons. KIF21A immunoreactivity is also observed in extraocular and skeletal muscle biopsies of control and CFEOM1 patients, where it co-localizes with triadin, a marker of the excitation-contractile coupling system. The diffuse and widespread expression of KIF21A in the developing human and mouse central and peripheral nervous system as well as in extraocular muscle does not account for the restricted ocular phenotype observed in CFEOM1, nor does it permit the formal exclusion of a myogenic etiology based on expression patterns alone.
PMCID: PMC3358471  PMID: 22465342
11.  Specific expression of Kcna10, Pxn and Odf2 in the organ of Corti 
Gene Expression Patterns  2012;12(5-6):172-179.
► We studied the expression of Pxn, Kcna10 and Odf2 in the developing mouse inner ear. ► We covered several ages between E14.5 and P5, and also looked at adults. ► Pxn is a focal adhesion protein expressed strongly in pillar cells. ► Kcna10 is a potassium channel expressed in hair cells. ► Odf2 (Cenexin) marks dendrites extending to and contacting hair cells.
The development of the organ of Corti and the highly specialized cells required for hearing involves a multitude of genes, many of which remain unknown. Here we describe the expression pattern of three genes not previously studied in the inner ear in mice at a range of ages both embryonic and early postnatal. Kcna10, a tetrameric Shaker-like potassium channel, is expressed strongly in the hair cells themselves. Odf2, as its centriolar isoform Cenexin, marks the dendrites extending to and contacting hair cells, and Pxn, a focal adhesion scaffold protein, is most strongly expressed in pillar cells during the ages studied. The roles of these genes are yet to be elucidated, but their specific expression patterns imply potential functional significance in the inner ear.
PMCID: PMC3368262  PMID: 22446089
Odf2; Cenexin; Pxn; Kcna10; Inner ear

Results 1-11 (11)