Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Transcriptional profiling of Wnt4 mutant mouse kidneys identifies genes expressed during nephron formation 
Gene expression patterns : GEP  2008;8(5):297-306.
The mature nephron forms from a simple epithelial vesicle into an elaborate structure with distinct regions of specialized physiological function. The molecular components driving the process of nephron development are not well understood. To identify genes that may be informative in this process we conducted a transcriptional profiling screen using Wnt4 mutant kidneys. In Wnt4 −/− homozygous mice, condensates and pretubular aggregates are induced, however, epithelial renal vesicles fail to form and subsequent tubulogenesis is blocked. A transcriptional profile comparison between wildtype and Wnt4−/− mutant kidneys at E14.5 was performed using Affymetrix oligonucleotide microarrays to identify nephron-expressed genes. This approach identified 236 genes with expression levels >1.8 fold higher in wildtype versus mutant kidneys, amongst these were a number of known nephron component markers confirming the validity of the screen. These results were further detailed by wholemount in situ hybridization (WISH) of E15.5 urogenital systems (UGS). We annotated the spatial expression pattern of these genes into eight categories of expression. Genes expressed in renal vesicle and their derivatives, structures absent in the mutant, accounted for the largest number of the observed expression patterns. A number of additional genes in areas not directly overlapping the Wnt4 expression domain were also identified including the cap mesenchyme, the collecting duct, and the cortical interstitium. This study provides a useful compendium of molecular markers for the study of nephrogenesis.
PMCID: PMC2435058  PMID: 18346943
nephrogenesis; mesenchymal to epithelial transition; tubulogenesis; kidney development
2.  A high-resolution anatomical ontology of the developing murine genitourinary tract 
Gene expression patterns : GEP  2007;7(6):680-699.
Cataloguing gene expression during development of the genitourinary tract will increase our understanding not only of this process but also of congenital defects and disease affecting this organ system. We have developed a high-resolution ontology with which to describe the subcompartments of the developing murine genitourinary tract. This ontology incorporates what can be defined histologically and begins to encompass other structures and cell types already identified at the molecular level. The ontology is being used to annotate in situ hybridisation data generated as part of the Genitourinary Development Molecular Anatomy Project (GUDMAP), a publicly available data resource on gene and protein expression during genitourinary development. The GUDMAP ontology encompasses Theiler stage (TS) 17 to 27 of development as well as the sexually mature adult. It has been written as a partonomic, text-based, hierarchical ontology that, for the embryological stages, has been developed as a high-resolution expansion of the existing Edinburgh Mouse Atlas Project (EMAP) ontology. It also includes group terms for well-characterised structural and/or functional units comprising several sub-structures, such as the nephron and juxtaglomerular complex. Each term has been assigned a unique identification number. Synonyms have been used to improve the success of query searching and maintain wherever possible existing EMAP terms relating to this organ system. We describe here the principles and structure of the ontology and provide representative diagrammatic, histological, and whole mount and section RNA in situ hybridisation images to clarify the terms used within the ontology. Visual examples of how terms appear in different specimen types are also provided.
PMCID: PMC2117077  PMID: 17452023
genitourinary development; renal development; kidney development; urinary development; reproductive development; kidney; gonad; bladder; ureter; urethra; genital tubercle; ovary; testis; congenital defects; gene expression; ontology; annotation; database; anatomy; atlas of development; partonomic ontology; RNA in situ hybridisation

Results 1-2 (2)