PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
issn:1567-133
1.  Glial enriched gene expression profiling identifies novel factors regulating the proliferation of specific glial subtypes in the Drosophila brain 
Gene Expression Patterns  2014;16(1):61-68.
Highlights
•Global gene expression analysis identifies glial specific transcriptomes.•Different glial subtypes have distinct but overlapping transcriptomes.•foxO and tramtrack69 are novel regulators of glial subtype specific proliferation.
Glial cells constitute a large proportion of the central nervous system (CNS) and are critical for the correct development and function of the adult CNS. Recent studies have shown that specific subtypes of glia are generated through the proliferation of differentiated glial cells in both the developing invertebrate and vertebrate nervous systems. However, the factors that regulate glial proliferation in specific glial subtypes are poorly understood. To address this we have performed global gene expression analysis of Drosophila post-embryonic CNS tissue enriched in glial cells, through glial specific overexpression of either the FGF or insulin receptor. Analysis of the differentially regulated genes in these tissues shows that the expression of known glial genes is significantly increased in both cases. Conversely, the expression of neuronal genes is significantly decreased. FGF and insulin signalling drive the expression of overlapping sets of genes in glial cells that then activate proliferation. We then used these data to identify novel transcription factors that are expressed in glia in the brain. We show that two of the transcription factors identified in the glial enriched gene expression profiles, foxO and tramtrack69, have novel roles in regulating the proliferation of cortex and perineurial glia. These studies provide new insight into the genes and molecular pathways that regulate the proliferation of specific glial subtypes in the Drosophila post-embryonic brain.
doi:10.1016/j.gep.2014.09.001
PMCID: PMC4222725  PMID: 25217886
Glia; Drosophila; Cortex; Perineurial; foxO; Tramtrack
2.  Dynamic expression of neurexophilin1 during zebrafish embryonic development☆ 
Gene Expression Patterns  2013;13(8):395-401.
Highlights
•Spatial and temporal expression of nxph1 during zebrafish embryonic development.•High conservation of neurexophilins among vertebrates.•High homology of nxph1 between zebrafish and other vertebrates.•Expression of nxph1 in various clusters of post-mitotic neurons and in glia.•Zebrafish is a good model to understand the in vivo function of neurexophilin in vertebrates.
Neurexophilin 1 (Nxph1) is a specific endoligand of α-neurexins that is essential for trans-synaptic activation. Here, we report its dynamic expression during development in zebrafish. Our study revealed an early onset of expression of nxph1. RT-PCR on a series of embryonic stages showed that it is maternally deposited, although only readily detectable by whole mount in situ hybridization by 22 hpf. During embryogenesis and larval stages, the zygotic transcript is expressed dynamically in various clusters of post-mitotic neurons and in glia in the central nervous system.
doi:10.1016/j.gep.2013.07.006
PMCID: PMC3838620  PMID: 23880144
Neurexophilins; Synapses; Neurexins; Epiphysis; Zebrafish; Interneurons; Neurons
3.  Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis☆ 
Gene Expression Patterns  2013;13(8):464-472.
Highlights
•Analysis of brittle star regenerating arms using differentiation markers.•Identification of the early segregation of skeletal and muscle progenitor cells.•Expression of skeletal and non-skeletal genes at different stages of regeneration.•Combinatorial role of TF genes in early specification of skeletal cells.•Same TF genes identify different skeletal structures later in regeneration.
The brittle star Amphiura filiformis, which regenerates its arms post autotomy, is emerging as a useful model for studying the molecular underpinnings of regeneration, aided by the recent availability of some molecular resources. During regeneration a blastema initially is formed distally to the amputation site, and then a rapid rebuild is obtained by adding metameric units, which will eventually differentiate and become fully functional. In this work we first characterize the developmental process of the regenerating arms using two differentiation markers for muscle and skeletal structures – Afi-trop-1 and Afi-αcoll. Both genes are not expressed in the blastema and newly added undifferentiated metameric units. Their expression at different regenerating stages shows an early segregation of muscle and skeletal cells during the regenerating process, long before the metameric units become functional. We then studied the expression of a set of genes orthologous of the sea urchin transcription factors involved in the development of skeletal and non-skeletal mesoderm: Afi-ets1/2, Afi-alx1, Afi-tbr, Afi-foxB and Afi-gataC. We found that Afi-ets1/2, Afi-alx1, Afi-foxB and Afi-gataC are all expressed at the blastemal stage. As regeneration progresses those genes are expressed in a similar small undifferentiated domain beneath the distal growth cap, while in more advanced metameric units they become restricted to different skeletal domains. Afi-foxB becomes expressed in non-skeletal structures. This suggests that they might play a combinatorial role only in the early cell specification process and that subsequently they function independently in the differentiation of different structures. Afi-tbr is not present in the adult arm tissue at any stage of regeneration. In situ hybridization results have been confirmed with a new strategy for quantitative PCR (QPCR), using a subdivision of the three stages of regeneration into proximal (differentiated) and distal (undifferentiated) arm segments.
doi:10.1016/j.gep.2013.09.002
PMCID: PMC3838619  PMID: 24051028
Regeneration; Brittle star; Transcription factors; Skeleton; ets1/2; tbr; gataC; foxB; alx1
4.  Specific expression of Kcna10, Pxn and Odf2 in the organ of Corti 
Gene Expression Patterns  2012;12(5-6):172-179.
Highlights
► We studied the expression of Pxn, Kcna10 and Odf2 in the developing mouse inner ear. ► We covered several ages between E14.5 and P5, and also looked at adults. ► Pxn is a focal adhesion protein expressed strongly in pillar cells. ► Kcna10 is a potassium channel expressed in hair cells. ► Odf2 (Cenexin) marks dendrites extending to and contacting hair cells.
The development of the organ of Corti and the highly specialized cells required for hearing involves a multitude of genes, many of which remain unknown. Here we describe the expression pattern of three genes not previously studied in the inner ear in mice at a range of ages both embryonic and early postnatal. Kcna10, a tetrameric Shaker-like potassium channel, is expressed strongly in the hair cells themselves. Odf2, as its centriolar isoform Cenexin, marks the dendrites extending to and contacting hair cells, and Pxn, a focal adhesion scaffold protein, is most strongly expressed in pillar cells during the ages studied. The roles of these genes are yet to be elucidated, but their specific expression patterns imply potential functional significance in the inner ear.
doi:10.1016/j.gep.2012.03.001
PMCID: PMC3368262  PMID: 22446089
Odf2; Cenexin; Pxn; Kcna10; Inner ear

Results 1-4 (4)