PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  GLUT4 content decreases along with insulin resistance and high levels of inflammatory markers in rats with metabolic syndrome 
Background
Metabolic syndrome is characterized by insulin resistance, which is closely related to GLUT4 content in insulin-sensitive tissues. Thus, we evaluated the GLUT4 expression, insulin resistance and inflammation, characteristics of the metabolic syndrome, in an experimental model.
Methods
Spontaneously hypertensive neonate rats (18/group) were treated with monosodium glutamate (MetS) during 9 days, and compared with Wistar-Kyoto (C) and saline-treated SHR (H). Blood pressure (BP) and lipid levels, C-reactive protein (CRP), interleukin 6 (IL-6), TNF-α and adiponectin were evaluated. GLUT4 protein was analysed in the heart, white adipose tissue and gastrocnemius. Studies were performed at 3 (3-mo), 6 (6-mo) and 9 (9-mo) months of age.
Results
MetS rats were more insulin resistant (p<0.001, all ages) and had higher BP (3-mo: p<0.001, 6-mo: p = 0.001, 9-mo: p = 0.015) as compared to C. At 6 months, CRP, IL-6 and TNF-α were higher (p<0.001, all comparisons) in MetS rats vs H, but adiponectin was lower in MetS at 9 months (MetS: 32 ± 2, H: 42 ± 2, C: 45 ± 2 pg/mL; p<0.001). GLUT4 protein was reduced in MetS as compared to C rats at 3, 6 and 9-mo, respectively (Heart: 54%, 50% and 57%; Gastrocnemius: 37%, 56% and 50%; Adipose tissue: 69%, 61% and 69%).
Conclusions
MSG-treated SHR presented all metabolic syndrome characteristics, as well as reduced GLUT4 content, which must play a key role in the impaired glycemic homeostasis of the metabolic syndrome.
doi:10.1186/1475-2840-11-100
PMCID: PMC3439702  PMID: 22897936
Monosodium glutamate; Spontaneously hypertensive rats; Glucose transporter 4
3.  Renal denervation in an animal model of diabetes and hypertension: Impact on the autonomic nervous system and nephropathy 
Background
The effects of renal denervation on cardiovascular reflexes and markers of nephropathy in diabetic-hypertensive rats have not yet been explored.
Methods
Aim: To evaluate the effects of renal denervation on nephropathy development mechanisms (blood pressure, cardiovascular autonomic changes, renal GLUT2) in diabetic-hypertensive rats. Forty-one male spontaneously hypertensive rats (SHR) ~250 g were injected with STZ or not; 30 days later, surgical renal denervation (RD) or sham procedure was performed; 15 days later, glycemia and albuminuria (ELISA) were evaluated. Catheters were implanted into the femoral artery to evaluate arterial pressure (AP) and heart rate variability (spectral analysis) one day later in conscious animals. Animals were killed, kidneys removed, and cortical renal GLUT2 quantified (Western blotting).
Results
Higher glycemia (p < 0.05) and lower mean AP were observed in diabetics vs. nondiabetics (p < 0.05). Heart rate was higher in renal-denervated hypertensive and lower in diabetic-hypertensive rats (384.8 ± 37, 431.3 ± 36, 316.2 ± 5, 363.8 ± 12 bpm in SHR, RD-SHR, STZ-SHR and RD-STZ-SHR, respectively). Heart rate variability was higher in renal-denervated diabetic-hypertensive rats (55.75 ± 25.21, 73.40 ± 53.30, 148.4 ± 93 in RD-SHR, STZ-SHR- and RD-STZ-SHR, respectively, p < 0.05), as well as the LF component of AP variability (1.62 ± 0.9, 2.12 ± 0.9, 7.38 ± 6.5 in RD-SHR, STZ-SHR and RD-STZ-SHR, respectively, p < 0.05). GLUT2 renal content was higher in all groups vs. SHR.
Conclusions
Renal denervation in diabetic-hypertensive rats improved previously reduced heart rate variability. The GLUT2 equally overexpressed by diabetes and renal denervation may represent a maximal derangement effect of each condition.
doi:10.1186/1475-2840-10-33
PMCID: PMC3110548  PMID: 21496329
4.  Hyperglycemia can delay left ventricular dysfunction but not autonomic damage after myocardial infarction in rodents 
Background
Although clinical diabetes mellitus is obviously a high risk factor for myocardial infarction (MI), in experimental studies disagreement exists about the sensitivity to ischemic injury of an infarcted myocardium. Recently, our group demonstrated that diabetic animals presented better cardiac function recovery and cellular resistance to ischemic injury than nondiabetics. In the present study, we evaluated the chronic effects of MI on left ventricular (LV) and autonomic functions in streptozotocin (STZ) diabetic rats.
Methods
Male Wistar rats were divided into 4 groups: control (C, n = 15), diabetes (D, n = 16), MI (I, n = 21), and diabetes + MI (DI, n = 30). MI was induced 15 days after diabetes (STZ) induction. Ninety days after MI, LV and autonomic functions were evaluated (8 animals each group). Left ventricular homogenates were analyzed by Western blotting to evaluate the expression of calcium handling proteins.
Results
MI area was similar in infarcted groups (~43%). Ejection fraction and +dP/dt were reduced in I compared with DI. End-diastolic pressure was additionally increased in I compared with DI. Compared with DI, I had increased Na+-Ca2+ exchange and phospholamban expression (164%) and decreased phosphorylated phospholamban at serine16 (65%) and threonine17 (70%) expression. Nevertheless, diabetic groups had greater autonomic dysfunction, observed by baroreflex sensitivity and pulse interval variability reductions. Consequently, the mortality rate was increased in DI compared with I, D, and C groups.
Conclusions
LV dysfunction in diabetic animals was attenuated after 90 days of myocardial infarction and was associated with a better profile of calcium handling proteins. However, this positive adaptation was not able to reduce the mortality rate of DI animals, suggesting that autonomic dysfunction is associated with increased mortality in this group. Therefore, it is possible that the better cardiac function has been transitory, and the autonomic dysfunction, more prominent in diabetic group, may lead, in the future, to the cardiovascular damage.
doi:10.1186/1475-2840-10-26
PMCID: PMC3084163  PMID: 21470409
5.  'Correction:' Serum transforming growth factor beta-1 (TGF-beta-1) levels in diabetic patients are not associated with pre-existent coronary artery disease 
Background
The association between TGF-β1 levels and long-term major adverse cardiovascular events (MACE) in patients with coronary artery disease (CAD) is controversial. No study specifically addressed patients with CAD and diabetes mellitus (DM). The association between TGF-β1 levels and long-term major adverse cardiovascular events (MACE) in patients with coronary artery disease (CAD) is controversial. No study specifically addressed patients with CAD and diabetes mellitus (DM).
Methods
Patients (n = 135, 30–80 years) referred for coronary angiography were submitted to clinical and laboratory evaluation, and the coronary angiograms were evaluated by two operators blinded to clinical characteristics. CAD was defined as the presence of a 70% stenosis in one major coronary artery, and DM was characterized as a fasting glycemia > 126 mg/dl or known diabetics (personal history of diabetes or previous use of anti-hyperglycemic drugs or insulin). Based on these criteria, study patients were classified into four groups: no DM and no CAD (controls, C n = 61), DM without CAD (D n = 23), CAD without DM (C-CAD n = 28), and CAD with DM (D-CAD n = 23). Baseline differences between the 4 groups were evaluated by the χ2 test for trend (categorical variables) and by ANOVA (continuous variables, post-hoc Tukey). Patients were then followed-up during two years for the occurrence of MACE (cardiac death, stroke, myocardial infarction or myocardial revascularization). The association of candidate variables with the occurrence of 2-year MACE was assessed by univariate analysis.
Results
The mean age was 58.2 ± 0.9 years, and 51% were men. Patients with CAD had a higher mean age (p = 0.011) and a higher percentage were male (p = 0.040). There were no significant baseline differences between the 4 groups regarding hypertension, smoking status, blood pressure levels, lipid levels or inflammatory markers. TGF-β1 was similar between patients with or without CAD or DM (35.1 ×/÷ 1.3, 33.6 ×/÷ 1.6, 33.9 ×/÷ 1.4 and 31.8 ×/÷ 1.4 ng/ml in C, D, C-CAD and D-CAD, respectively, p = 0.547). In the 2-year follow-ip, independent predictors of 2-year MACE were age (p = 0.007), C-reactive protein (p = 0.048) and systolic blood pressure (p = 0.008), but not TGF-β1.
Conclusion
Serum TGF-β1 was not associated with CAD or MACE occurrence in patients with or without DM.
doi:10.1186/1475-2840-6-19
PMCID: PMC1976604  PMID: 17651487

Results 1-5 (5)