PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Does the lipid-lowering peroxisome proliferator-activated receptors ligand bezafibrate prevent colon cancer in patients with coronary artery disease? 
Background
Epidemiologic studies have suggested that hypertriglyceridemia and insulin resistance are related to the development of colon cancer. Nuclear peroxisome proliferator-activated receptors (PPAR), which play a central role in lipid and glucose metabolism, had been hypothesized as being involved in colon cancerogenesis. In animal studies the lipid-lowering PPAR ligand bezafibrate suppressed colonic tumors. However, the effect of bezafibrate on colon cancer development in humans is unknown. Therefore, we proposed to investigate a possible preventive effect of bezafibrate on the development of colon cancer in patients with coronary artery disease during a 6-year follow-up.
Methods
Our population included 3011 patients without any cancer diagnosis who were enrolled in the randomized, double blind Bezafibrate Infarction Prevention (BIP) Study. The patients received either 400 mg of bezafibrate retard (1506 patients) or placebo (1505 patients) once a day. Cancer incidence data were obtained by matching a subject's identification numbers with the National Cancer Registry. Each matched record was checked for correct identification.
Results
Development of new cancer (all types) was recorded in 177 patients: in 79 (5.25%) patients from the bezafibrate group vs. 98 (6.51%) from the placebo group. Development of colon cancer was recorded in 25 patients: in 8 (0.53%) patients from the bezafibrate group vs. 17 (1.13%) from the placebo group, (Fisher's exact test: one side p = 0.05; two side p = 0.07).
A difference in the incidence of cancer was only detectable after a 4 year lag and progressively increased with continued follow-up. On multivariable analysis the colon cancer risk in patients who received bezafibrate tended to be lower with a hazard ratio of 0.47 and 95% confidence interval 0.2–1.1.
Conclusion
Our data, derived from patients with coronary artery disease, support the hypothesis regarding a possible preventive effect of bezafibrate on the development of colon cancer.
doi:10.1186/1475-2840-7-18
PMCID: PMC2440374  PMID: 18565233
2.  Atherogenic dyslipidemia in metabolic syndrome and type 2 diabetes: therapeutic options beyond statins 
Lowering of low-density lipoprotein cholesterol with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) is clearly efficacious in the treatment and prevention of coronary artery disease. However, despite increasing use of statins, a significant number of coronary events still occur and many of such events take place in patients presenting with type 2 diabetes and metabolic syndrome. More and more attention is being paid now to combined atherogenic dyslipidemia which typically presents in patients with type 2 diabetes and metabolic syndrome. This mixed dyslipidemia (or "lipid quartet"): hypertriglyceridemia, low high-density lipoprotein cholesterol levels, a preponderance of small, dense low-density lipoprotein particles and an accumulation of cholesterol-rich remnant particles (e.g. high levels of apolipoprotein B) – emerged as the greatest "competitor" of low-density lipoprotein-cholesterol among lipid risk factors for cardiovascular disease. Most recent extensions of the fibrates trials (BIP – Bezafibrate Infarction Prevention study, HHS – Helsinki Heart Study, VAHIT – Veterans Affairs High-density lipoprotein cholesterol Intervention Trial and FIELD – Fenofibrate Intervention and Event Lowering in Diabetes) give further support to the hypothesis that patients with insulin-resistant syndromes such as diabetes and/or metabolic syndrome might be the ones to derive the most benefit from therapy with fibrates. However, different fibrates may have a somewhat different spectrum of effects. Other lipid-modifying strategies included using of niacin, ezetimibe, bile acid sequestrants and cholesteryl ester transfer protein inhibition. In addition, bezafibrate as pan-peroxisome proliferator activated receptor activator has clearly demonstrated beneficial pleiotropic effects related to glucose metabolism and insulin sensitivity. Because fibrates, niacin, ezetimibe and statins each regulate serum lipids by different mechanisms, combination therapy – selected on the basis of their safety and effectiveness – may offer particularly desirable benefits in patients with combined hyperlipidemia as compared with statins monotherapy.
doi:10.1186/1475-2840-5-20
PMCID: PMC1592077  PMID: 17002798
3.  Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons 
There are three peroxisome proliferator-activated receptors (PPARs) subtypes which are commonly designated PPAR alpha, PPAR gamma and PPAR beta/delta. PPAR alpha activation increases high density lipoprotein (HDL) cholesterol synthesis, stimulates "reverse" cholesterol transport and reduces triglycerides. PPAR gamma activation results in insulin sensitization and antidiabetic action. Until recently, the biological role of PPAR beta/delta remained unclear. However, treatment of obese animals by specific PPAR delta agonists results in normalization of metabolic parameters and reduction of adiposity. Combined treatments with PPAR gamma and alpha agonists may potentially improve insulin resistance and alleviate atherogenic dyslipidemia, whereas PPAR delta properties may prevent the development of overweight which typically accompanies "pure" PPAR gamma ligands. The new generation of dual-action PPARs – the glitazars, which target PPAR-gamma and PPAR-alpha (like muraglitazar and tesaglitazar) are on deck in late-stage clinical trials and may be effective in reducing cardiovascular risk, but their long-term clinical effects are still unknown. A number of glitazars have presented problems at a late stage of clinical trials because of serious side-effects (including ragaglitazar and farglitazar). The old and well known lipid-lowering fibric acid derivative bezafibrate is the first clinically tested pan – (alpha, beta/delta, gamma) PPAR activator. It is the only pan-PPAR activator with more than a quarter of a century of therapeutic experience with a good safety profile. Therefore, bezafibrate could be considered (indeed, as a "post hoc" understanding) as an "archetype" of a clinically tested pan-PPAR ligand. Bezafibrate leads to considerable raising of HDL cholesterol and reduces triglycerides, improves insulin sensitivity and reduces blood glucose level, significantly lowering the incidence of cardiovascular events and new diabetes in patients with features of metabolic syndrome. Clinical evidences obtained from bezafibrate-based studies strongly support the concept of pan-PPAR therapeutic approach to conditions which comprise the metabolic syndrome. However, from a biochemical point of view, bezafibrate is a PPAR ligand with a relatively low potency. More powerful new compounds with pan-PPAR activity and proven long-term safety should be highly effective in a clinical setting of patients with coexisting relevant lipid and glucose metabolism disorders.
doi:10.1186/1475-2840-4-14
PMCID: PMC1236941  PMID: 16168052
4.  Increased prevalence of left ventricular hypertrophy in hypertensive women with type 2 diabetes mellitus 
Background
Left ventricular hypertrophy (LVH) is a powerful independent risk factor for cardiovascular morbidity and mortality among hypertensive patients. Data regarding relationships between diabetes and LVH are controversial and inconclusive, whereas possible gender differences were not specifically investigated. The goal of this work was to investigate whether gender differences in left heart structure and mass are present in hypertensive patients with type 2 diabetes.
Methods
Five hundred fifty hypertensive patients with at least one additional cardiovascular risk factor (314 men and 246 women, age 52 to 81, mean 66 ± 6 years), were enrolled in the present analysis. In 200 (36%) of them – 108 men and 92 women – type 2 diabetes mellitus was found upon enrollment. End-diastolic measurements of interventricular septal thickness (IVS), LV internal diameter, and posterior wall thickness were performed employing two-dimensionally guided M-mode echocardiograms. LVH was diagnosed when LV mass index (LVMI) was >134 g/m2 in men and >110 g/m2 in women.
Results
Mean LVMI was significantly higher among diabetic vs. nondiabetic women (112.5 ± 29 vs. 105.6 ± 24, p = 0.03). In addition, diabetic women presented a significantly higher prevalence of increased IVS thickness, LVMI and left atrial diameter on intra-gender comparisons. The age adjusted relative risk for increased LVMI in diabetics vs. nondiabetics was 1.47 (95% CI: 1.0–2.2) in females and only 0.8 (0.5–1.3) in males.
Conclusion
Type 2 diabetes mellitus was associated with a significantly higher prevalence of LVH and left atrial enlargement in hypertensive women.
doi:10.1186/1475-2840-2-14
PMCID: PMC317343  PMID: 14633284
Diabetes mellitus; Echocardiography; Hypertension; Left ventricular hypertrophy
5.  Cardiovascular diabetology in the core of a novel interleukins classification: the bad, the good and the aloof 
Background
The impressive correlation between cardiovascular disease and glucose metabolism alterations has raised the likelihood that atherosclerosis and type 2 diabetes may share common antecedents. Inflammation is emerging as a conceivable etiologic mechanism for both. Interleukins are regulatory proteins with ability to accelerate or inhibit inflammatory processes.
Presentation of the hypothesis
A novel interleukins classification is described, based on their role in diabetes and atherosclerosis, hypothesizing that each interleukin (IL) acts on both diseases in the same direction – regardless if harmful, favorable or neutral.
Testing the hypothesis
The 29 known interleukins were clustered into three groups: noxious (the "bad", 8 members), comprising IL-1, IL-2, IL-6, IL-7, IL-8, IL-15, IL-17 and IL-18; protective (the "good", 5 members), comprising IL-4, IL-10, IL-11, IL-12 and IL-13; and "aloof", comprising IL-5, IL-9, IL-14, IL-16 and IL-19 through IL-29 (15 members). Each group presented converging effects on both diseases. IL-3 was reluctant to clustering.
Implications
These observations imply that 1) favorable effects of a given IL on either diabetes or atherosclerosis predicts similar effects on the other; 2) equally, harmful IL effects on one disease can be extrapolated to the other; and 3) absence of influence of a given IL on one of these diseases forecasts lack of effects on the other. These facts further support the unifying etiologic theory of both ailments, emphasizing the importance of a cardiovascular diabetologic approach to interleukins for future research. Pharmacologic targeting of these cytokines might provide an effective means to simultaneously control both atherosclerosis and diabetes.
doi:10.1186/1475-2840-2-11
PMCID: PMC212422  PMID: 14525620
Atherosclerosis; Coronary artery disease; Cytokines; Diabetes mellitus; Interleukins
6.  Metabolic syndrome and type 2 diabetes mellitus: focus on peroxisome proliferator activated receptors (PPAR) 
The metabolic syndrome is a highly prevalent clinical entity. The recent Adult Treatment Panel (ATP III) guidelines have called specific attention to the importance of targeting the cardiovascular risk factors of the metabolic syndrome as a method of risk reduction therapy. The main factors characteristic of this syndrome are abdominal obesity, atherogenic dyslipidemia, elevated blood pressure, insulin resistance (with or without glucose intolerance), prothrombotic and proinflammatory states. An insulin resistance following nuclear peroxisome proliferator activated receptors (PPAR) deactivation (mainly obesity-related) is the key phase of metabolic syndrome initiation. Afterwards, there are 2 principal pathways of metabolic syndrome development: 1) with preserved pancreatic beta cells function and insulin hypersecretion which can compensate for insulin resistance. This pathway leads mainly to the macrovascular complications of metabolic syndrome; 2) with massive damage of pancreatic beta cells leading to progressively decrease of insulin secretion and to hyperglycemia (e.g. overt type 2 diabetes). This pathway leads to both microvascular and macrovascular complications. We suggest that a PPAR-based appraisal of metabolic syndrome and type 2 diabetes may improve our understanding of these diseases and set a basis for a comprehensive approach in their treatment.
doi:10.1186/1475-2840-2-4
PMCID: PMC153546  PMID: 12834541
Metabolic syndrome; Diabetes mellitus; Peroxisome proliferator activated receptors (PPAR); Obesity; Insulin resistance
7.  Losartan and diabetic nephropathy: commentaries on the RENAAL study 
The RENAAL (Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan) study is a multinational, double-blind, randomized, placebo controlled trial which was recently published. It was aimed to evaluate the effect of the angiotensin receptor blocker losartan in patients with diabetic nephropathy. The primary efficacy measure was the time to the first event of the composite end point of a doubling of serum creatinine, end-stage renal disease, or death. The conclusion was that losartan led to significant improvement in renal outcomes, that was beyond that attributable to blood pressure control in patients with type 2 diabetes and nephropathy.
The perusal of the report raises concern, regarding to both the patient population as well as the outcome measures. At randomization, the placebo group included more patients with angina, myocardial infarction and lipid disorders than the losartan group. Information on glucose metabolism was disregarded, and data on antihyperglycemic therapy – which may have undesirable influences on cardiac performance – were not included in a multivariate analysis. In addition, only data on first hospitalization were reported, whilst information on total specific-cause hospitalizations was disregarded, thus potentially masking further unfavorable events. Furthermore, creatinine seems not to be a reliable surrogate end point. Based on its mechanism of action, losartan may possess favorable renoprotective properties. However, due to the methodological flaws and the incomplete data in the RENAAL study, the question of the effectiveness and safety of this drug in diabetic nephropathy remains yet unanswered.
doi:10.1186/1475-2840-1-2
PMCID: PMC116616  PMID: 12119058
Angiotensin receptor blockers; Clinical trials; Diabetes mellitus; Losartan; Nephropathy; RENAAL study

Results 1-7 (7)