PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Diabetes, perioperative ischaemia and volatile anaesthetics: consequences of derangements in myocardial substrate metabolism 
Volatile anaesthetics exert protective effects on the heart against perioperative ischaemic injury. However, there is growing evidence that these cardioprotective properties are reduced in case of type 2 diabetes mellitus. A strong predictor of postoperative cardiac function is myocardial substrate metabolism. In the type 2 diabetic heart, substrate metabolism is shifted from glucose utilisation to fatty acid oxidation, resulting in metabolic inflexibility and cardiac dysfunction. The ischaemic heart also loses its metabolic flexibility and can switch to glucose or fatty acid oxidation as its preferential state, which may deteriorate cardiac function even further in case of type 2 diabetes mellitus.
Recent experimental studies suggest that the cardioprotective properties of volatile anaesthetics partly rely on changing myocardial substrate metabolism. Interventions that target at restoration of metabolic derangements, like lifestyle and pharmacological interventions, may therefore be an interesting candidate to reduce perioperative complications. This review will focus on the current knowledge regarding myocardial substrate metabolism during volatile anaesthesia in the obese and type 2 diabetic heart during perioperative ischaemia.
doi:10.1186/1475-2840-12-42
PMCID: PMC3599199  PMID: 23452502
Volatile anaesthetics; Substrate metabolism; Ischaemia; Diabetes; Heart
2.  High fat diet-induced glucose intolerance impairs myocardial function, but not myocardial perfusion during hyperaemia: a pilot study 
Background
Glucose intolerance is a major health problem and is associated with increased risk of progression to type 2 diabetes mellitus and cardiovascular disease. However, whether glucose intolerance is related to impaired myocardial perfusion is not known. The purpose of the present study was to study the effect of diet-induced glucose intolerance on myocardial function and perfusion during baseline and pharmacological induced hyperaemia.
Methods
Male Wistar rats were randomly exposed to a high fat diet (HFD) or control diet (CD) (n = 8 per group). After 4 weeks, rats underwent an oral glucose tolerance test. Subsequently, rats underwent (contrast) echocardiography to determine myocardial function and perfusion during baseline and dipyridamole-induced hyperaemia (20 mg/kg for 10 min).
Results
Four weeks of HFD feeding resulted in glucose intolerance compared to CD-feeding. Contractile function as represented by fractional shortening was not altered in HFD-fed rats compared to CD-fed rats under baseline conditions. However, dipyridamole increased fractional shortening in CD-fed rats, but not in HFD-fed rats. Basal myocardial perfusion, as measured by estimate of perfusion, was similar in CD- and HFD-fed rats, whereas dipyridamole increased estimate of perfusion in CD-fed rats, but not in HFD-fed rats. However, flow reserve was not different between CD- and HFD-fed rats.
Conclusions
Diet-induced glucose intolerance is associated with impaired myocardial function during conditions of hyperaemia, but myocardial perfusion is maintained. These findings may result in new insights into the effect of glucose intolerance on myocardial function and perfusion during hyperaemia.
doi:10.1186/1475-2840-11-74
PMCID: PMC3458910  PMID: 22716959
Glucose intolerance; Diet; Myocardial perfusion and function; Contrast echocardiography; Hyperaemia
3.  Diabetic cardiomyopathy in Zucker diabetic fatty rats: the forgotten right ventricle 
Background
In patients with myocardial infarction or heart failure, right ventricular (RV) dysfunction is associated with death, shock and arrhythmias. In patients with type 2 diabetes mellitus, structural and functional alterations of the left ventricle (LV) are highly prevalent, however, little is known about the impact of diabetes on RV characteristics. The purpose of the present study was to investigate whether LV changes are paralleled by RV alterations in a rat model of diabetes.
Methods
Zucker diabetic fatty (ZDF) and control (ZL) rats underwent echocardiography and positron emission tomography (PET) scanning using [18F]-2-fluoro-2-deoxy-D-glucose under hyperinsulinaemic euglycaemic clamp conditions. Glucose, insulin, triglycerides and fatty acids were assessed from trunk blood. Another group of rats received an insulin or saline injection to study RV insulin signaling.
Results
ZDF rats developed hyperglycaemia, hyperinsulinaemia and dyslipidaemia (all p < 0.05). Echocardiography revealed depressed LV fractional shortening and tricuspid annular plane systolic excursion (TAPSE) in ZDF vs. ZL rats (both p < 0.05). A decrease in LV and RV insulin-mediated glucose utilisation was found in ZDF vs. ZL rats (both p < 0.05). LV associated with RV with respect to systolic function (r = 0.86, p < 0.05) and glucose utilisation (r = 0.74, p < 0.05). TAPSE associated with RV MRglu (r = 0.92, p < 0.05) and M-value (r = 0.91, p < 0.0001) and RV MRglu associated with M-value (r = 0.77, p < 0.05). Finally, reduced RV insulin-stimulated phosphorylation of Akt was found in ZDF vs. ZL (p < 0.05).
Conclusions
LV changes were paralleled by RV alterations in insulin-stimulated glucose utilisation and RV systolic function in a rat model of diabetes, which may be attributed to ventricular interdependence as well as to the uniform effect of diabetes. Since diabetic patients are prone to develop diabetic cardiomyopathy and myocardial ischaemia, it might be suggested that RV dysfunction plays a central role in cardiac abnormalities in this population.
doi:10.1186/1475-2840-9-25
PMCID: PMC2898761  PMID: 20550678
4.  Altered myocardial substrate metabolism is associated with myocardial dysfunction in early diabetic cardiomyopathy in rats: studies using positron emission tomography 
Background
In vitro data suggest that changes in myocardial substrate metabolism may contribute to impaired myocardial function in diabetic cardiomyopathy (DCM). The purpose of the present study was to study in a rat model of early DCM, in vivo changes in myocardial substrate metabolism and their association with myocardial function.
Methods
Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats underwent echocardiography followed by [11C]palmitate positron emission tomography (PET) under fasting, and [18F]-2-fluoro-2-deoxy-D-glucose PET under hyperinsulinaemic euglycaemic clamp conditions. Isolated cardiomyocytes were used to determine isometric force development.
Results
PET data showed a 66% decrease in insulin-mediated myocardial glucose utilisation and a 41% increase in fatty acid (FA) oxidation in ZDF vs. ZL rats (both p < 0.05). Echocardiography showed diastolic and systolic dysfunction in ZDF vs. ZL rats, which was paralleled by a significantly decreased maximal force (68%) and maximal rate of force redevelopment (69%) of single cardiomyocytes. Myocardial functional changes were significantly associated with whole-body insulin sensitivity and decreased myocardial glucose utilisation. ZDF hearts showed a 68% decrease in glucose transporter-4 mRNA expression (p < 0.05), a 22% decrease in glucose transporter-4 protein expression (p = 0.10), unchanged levels of pyruvate dehydrogenase kinase-4 protein expression, a 57% decreased phosphorylation of AMP activated protein kinase α1/2 (p < 0.05) and a 2.4-fold increased abundance of the FA transporter CD36 to the sarcolemma (p < 0.01) vs. ZL hearts, which are compatible with changes in substrate metabolism. In ZDF vs. ZL hearts a 2.4-fold reduced insulin-mediated phosphorylation of Akt was found (p < 0.05).
Conclusion
Using PET and echocardiography, we found increases in myocardial FA oxidation with a concomitant decrease of insulin-mediated myocardial glucose utilisation in early DCM. In addition, the latter was associated with impaired myocardial function. These in vivo data expand previous in vitro findings showing that early alterations in myocardial substrate metabolism contribute to myocardial dysfunction.
doi:10.1186/1475-2840-8-39
PMCID: PMC2722582  PMID: 19624828

Results 1-4 (4)