PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Molybdate treatment and sulfate starvation decrease ATP and DNA levels in Ferroplasma acidarmanus  
Archaea  2008;2(3):205-209.
Sulfate is a primary source of sulfur for most microbes and in some prokaryotes it is used an electron acceptor. The acidophile Ferroplasma acidarmanus (strain fer1) requires a minimum of 150 mM of a sulfate-containing salt for growth. Sulfate is assimilated by F. acidarmanus into proteins and reduced to form the volatile organic sulfur compounds methanethiol and dimethyldisulfide. In the absence of sulfate, cell death occurs by an unknown mechanism. In this study, cell viability and genomic DNA and ATP contents of F. acidarmanus were monitored in response to the absence of sulfate or the presence of sulfate and the sulfate analog molybdate ( MoO42- ). Cellular DNA and ATP contents were monitored as markers of cell viability. The absence of sulfate led to a decrease in viable cell numbers of greater than 7 log10 within 5 days, a > 99% reduction in genomic DNA within 3 days, and a > 60% decrease in ATP within 6 h. Likewise, cells incubated with lost viability (decreased by > 2 log10 in 5 days), extractable genomic DNA (reduction of > 60% in 2 days), and ATP (reduction of > 70 % in 2 hours). These results demonstrate that sulfate deprivation or the presence of molybdate have similar impacts on cell viability and essential biomolecules. Sulfate was coupled to cellular ATP content and maintenance of DNA integrity in F. acidarmanus, a finding that may be applicable to other acidophiles that are typically found in sulfate-rich biotopes.
PMCID: PMC2685594  PMID: 19054747
archaea; acidophile; Ferroplasma; sulfate; sulfur
2.  New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species 
Archaea  2008;2(3):193-203.
A highly efficient method for chromosomal integration of cloned DNA into Methanosarcina spp. was developed utilizing the site-specific recombination system from the Streptomyces phage φC31. Host strains expressing the φC31 integrase gene and carrying an appropriate recombination site can be transformed with non-replicating plasmids carrying the complementary recombination site at efficiencies similar to those obtained with self-replicating vectors. We have also constructed a series of hybrid promoters that combine the highly expressed M. barkeri PmcrB promoter with binding sites for the tetracycline-responsive, bacterial TetR protein. These promoters are tightly regulated by the presence or absence of tetracycline in strains that express the tetR gene. The hybrid promoters can be used in genetic experiments to test gene essentiality by placing a gene of interest under their control. Thus, growth of strains with tetR-regulated essential genes becomes tetracycline-dependent. A series of plasmid vectors that utilize the site-specific recombination system for construction of reporter gene fusions and for tetracycline regulated expression of cloned genes are reported. These vectors were used to test the efficiency of translation at a variety of start codons. Fusions using an ATG start site were the most active, whereas those using GTG and TTG were approximately one half or one fourth as active, respectively. The CTG fusion was 95% less active than the ATG fusion.
PMCID: PMC2685592  PMID: 19054746
genetics; site-specific recombination; tetR; essential gene
3.  Identification of the gene for disaggregatase from Methanosarcina mazei  
Archaea  2008;2(3):185-191.
The gene sequences encoding disaggregatase (Dag), the enzyme responsible for dispersion of cell aggregates of Methanosarcina mazei to single cells, were determined for three strains of M. mazei (S-6T, LYC and TMA). The dag genes of the three strains were 3234 bp in length and had almost the same sequences with 97% amino acid sequence identities. Dag was predicted to comprise 1077 amino acid residues and to have a molecular mass of 120 kDa containing three repeats of the DNRLRE domain in the C terminus, which is specific to the genus Methanosarcina and may be responsible for structural organization and cell wall function. Recombinant Dag was overexpressed in Escherichia coli and preparations of the expressed protein exhibited enzymatic activity. The RT-PCR analysis showed that dag was transcribed to mRNA in M. mazei LYC and indicated that the gene was expressed in vivo. This is the first time the gene involved in the morphological change of Methanosarcina spp. from aggregate to single cells has been identified.
PMCID: PMC2685598  PMID: 19054745
methanochondroitin; morphological change
4.  Lipids of the ultra-thin square halophilic archaeon Haloquadratum walsbyi  
Archaea  2008;2(3):177-183.
The lipid composition of the extremely halophilic archaeon Haloquadratum walsbyi was investigated by thin-layer chromatography and electrospray ionization-mass spectrometry. The analysis of neutral lipids showed the presence of vitamin MK-8, squalene, carotene, bacterioruberin and several retinal isomers. The major polar lipids were phosphatidylglycerophosphate methyl ester, phosphatidylglycerosulfate, phosphatidylglycerol and sulfated diglycosyl diether lipid. Among cardiolipins, the tetra-phytanyl or dimeric phospholipids, only traces of bisphosphatidylglycerol were detected. When the cells were exposed to hypotonic medium, no changes in the membrane lipid composition occurred. Distinguishing it from other extreme halophiles of the Halobacteriaceae family, the osmotic stress did not induce the neo-synthesis of cardiolipins in H. walsbyi. The difference may depend on the three-laminar structure of the cell wall, which differs significantly from that of other Haloarchaea.
PMCID: PMC2685597  PMID: 19054744
Archaea; archaeal phospholipids; ether lipids; Halobacteriaceae

Results 1-4 (4)